Aller au contenu. | Aller à la navigation

Outils personnels

Navigation
Vous êtes ici : Accueil / Communication / Bibliographie / Bibliographie LMDZ 2022

Bibliographie LMDZ 2022

Bibliographie LMDZ mise à jour 2022

Liste thématique des références concernant le développement de LMDZ

 

16 novembre 2022

Références extérieures

[1]   Bram Van Leer. Towards the ultimate conservative difference scheme : IV. a new approach to numerical convection. J. Computational Phys., 23 :276–299, 1977.

[2]   T. Yamada. Simulations of nocturnal drainage flows by a q2l turbulence closure model. J. Atmos. Sci., 40 :91–106, 1983.

Configurations

[3]   H. Bellenger, E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard. ENSO representation in climate models : from CMIP3 to CMIP5. Climate Dynamics, 42 :1999–2018, Apr 2014.

[4]   Rémy Bonnet, Olivier Boucher, Julie Deshayes, Guillaume Gastineau, Frédéric Hourdin, Juliette Mignot, Jérôme Servonnat, and Didier Swingedouw. Presentation and evaluation of the IPSL-CM6A-LR Ensemble of extended historical simulations. Journal of Advances in Modeling Earth Systems, 13(9) :e2021MS002565, September 2021.

[5]   Olivier Boucher, Jérôme Servonnat, Anna Lea Albright, Olivier Aumont, Yves Balkanski, Vladislav Bastrikov, Slimane Bekki, Rémy Bonnet, Sandrine Bony, Laurent Bopp, Pascale Braconnot, Patrick Brockmann, Patricia Cadule, Arnaud Caubel, Frédérique Cheruy, Francis Codron, Anne Cozic, David Cugnet, Fabio d’Andrea, Paolo Davini, Casimir de Lavergne, Sébastien Denvil, Julie Deshayes, Marion Devilliers, Agnès Ducharne, Jean-Louis Dufresne, Eliott Dupont, Christian Éthé, Laurent Fairhead, Lola Falletti, Simona Flavoni, Marie-Alice Foujols, Sébastien Gardoll, Guillaume Gastineau, Josefine Ghattas, Jean-Yves Grandpeix, Bertrand Guenet, Lionel Guez, Éric Guilyardi, Matthieu Guimberteau, Didier Hauglustaine, Frédéric Hourdin, Abderrahmane Idelkadi, Sylvie Joussaume, Masa Kageyama, Myriam Khodri, Gerhard Krinner, Nicolas Lebas, Guillaume Levavasseur, Claire Lévy, Laurent Li, François Lott, Thibaut Lurton, Sebastiaan Luyssaert, Gurvan Madec, Jean-Baptiste Madeleine, Fabienne Maignan, Marion Marchand, Olivier Marti, Lidia Mellul, Yann Meurdesoif, Juliette Mignot, Ionela Musat, Catherine Ottle, Philippe Peylin, Yann Planton, Jan Polcher, Catherine Rio, Nicolas Rochetin, Clément Rousset, Pierre Sepulchre, Adriana Sima, Didier Swingedouw, Rémi Thiéblemont, Abdoul Khadre Traore, Martin Vancoppenolle, Jessica Vial, Jérôme Vialard, Nicolas Viovy, and Nicolas N. Vuichard. Presentation and evaluation of the IPSL-CM6A-LR climate model. Journal of Advances in Modeling Earth Systems, 12(7) :e2019MS002010, May 2020.

[6]   P. Braconnot, F. Hourdin, S. Bony, J.-L. Dufresne, J.-Y. Grandpeix, and O. Marti. Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean-atmosphere model. Clim. Dyn., 29 :501–520, 2007.

[7]   R. Chadwick, G. M. Martin, D. Copsey, G. Bellon, M. Caian, F. Codron, C. Rio, and R. Roehrig. Examining the West African Monsoon circulation response to atmospheric heating in a GCM dynamical core. Journal of Advances in Modeling Earth Systems, 9(1) :149–167, March 2017.

[8]   Frédérique Cheruy, Agnès Ducharne, Frédéric Hourdin, Ionela Musat, Étienne Vignon, Guillaume Gastineau, Vladislav Bastrikov, Nicolas Vuichard, Binta Diallo, Jean-Louis Dufresne, Josefine Ghattas, Jean-Yves Grandpeix, Abderrahmane Idelkadi, Lidia Mellul, Fabienne Maignan, Martin Ménégoz, Catherine Ottle, Philippe Peylin, Jérôme Servonnat, Fuxing Wang, and Yanfeng Zhao. Improved Near-Surface Continental Climate in IPSL-CM6A-LR by Combined Evolutions of Atmospheric and Land Surface Physics. Journal of Advances in Modeling Earth Systems, 12(10) :e2019MS002005, October 2020.

[9]   J. L. Dufresne, M. A. Foujols, S. Denvil, A. Caubel, O. Marti, O. Aumont, Y. Balkanski, S. Bekki, H. Bellenger, R. Benshila, S. Bony, L. Bopp, P. Braconnot, P. Brockmann, P. Cadule, F. Cheruy, F. Codron, A. Cozic, D. Cugnet, N. de Noblet, J. P. Duvel, C. Ethé, L. Fairhead, T. Fichefet, S. Flavoni, P. Friedlingstein, J. Y. Grandpeix, L. Guez, E. Guilyardi, D. Hauglustaine, F. Hourdin, A. Idelkadi, J. Ghattas, S. Joussaume, M. Kageyama, G. Krinner, S. Labetoulle, A. Lahellec, M. P. Lefebvre, F. Lefevre, C. Levy, Z. X. Li, J. Lloyd, F. Lott, G. Madec, M. Mancip, M. Marchand, S. Masson, Y. Meurdesoif, J. Mignot, I. Musat, S. Parouty, J. Polcher, C. Rio, M. Schulz, D. Swingedouw, S. Szopa, C. Talandier, P. Terray, N. Viovy, and N. Vuichard. Climate change projections using the IPSL-CM5 Earth System Model : from CMIP3 to CMIP5. Climate Dynamics, 40 :2123–2165, May 2013.

[10]   Jean Philippe Duvel, Hugo Bellenger, Gilles Bellon, and Marine Remaud. An event-by-event assessment of tropical intraseasonal perturbations for general circulation models. Climate Dynamics, 40 :857–873, Feb 2013.

[11]   Guillaume Gastineau, François Lott, Juliette Mignot, and Frédéric Hourdin. Alleviation of an Arctic Sea Ice Bias in a Coupled Model Through Modifications in the Subgrid-Scale Orographic Parameterization. Journal of Advances in Modeling Earth Systems, 12(9), September 2020.

[12]   F. Hourdin, M.-A. Foujols, F. Codron, V. Guemas, J.-L. Dufresne, S. Bony, S. Denvil, L. Guez, F. Lott, J. Ghattas, P. Braconnot, O. Marti, Y. Meurdesoif, and L. Bopp. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim. Dyn., 40 :2167–2192, May 2013.

[13]   F. Hourdin, J.-Y. Grandpeix, C. Rio, S. Bony, A. Jam, F. Cheruy, N. Rochetin, L. Fairhead, A. Idelkadi, I. Musat, J.-L. Dufresne, A. Lahellec, M.-P. Lefebvre, and R. Roehrig. LMDZ5B : the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim. Dyn., 40 :2193–2222, May 2013.

[14]   F. Hourdin, I. Musat, S. Bony, P. Braconnot, F. Codron, J.-L. Dufresne, L. Fairhead, M.-A. Filiberti, P. Friedlingstein, J.-Y. Grandpeix, G. Krinner, P. Levan, Z.-X. Li, and F. Lott. The LMDZ4 general circulation model : climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics, 27 :787–813, 2006.

[15]   Frédéric Hourdin, Catherine Rio, Jean-Yves Grandpeix, Jean-Baptiste Madeleine, Frédérique Cheruy, Nicolas Rochetin, Arnaud Jam, Ionela Musat, Abderrahmane Idelkadi, Laurent Fairhead, Marie-Alice Foujols, Lidia Mellul, Abdoul-Khadre Traore, Jean-Louis Dufresne, Olivier Boucher, Marie-Pierre Lefebvre, Ehouarn Millour, Etienne Vignon, Jean Jouhaud, F. Bint Diallo, François Lott, Guillaume Gastineau, Arnaud Caubel, Yann Meurdesoif, and Josefine Ghattas. LMDZ6A : The Atmospheric Component of the IPSL Climate Model With Improved and Better Tuned Physics. Journal of Advances in Modeling Earth Systems, 12(7) :e2019MS001892, July 2020.

[16]   Frédéric Hourdin, Daniel Williamson, Catherine Rio, Fleur Couvreux, Romain Roehrig, Najda Villefranque, Ionela Musat, Laurent Fairhead, F Binta Diallo, and Victoria Volodina. Process-Based Climate Model Development Harnessing Machine Learning : II. Model Calibration From Single Column to Global. Journal of Advances in Modeling Earth Systems, 13(6) :e2020MS002225, June 2021.

[17]   Thibaut Lurton, Yves Balkanski, Vladislav Bastrikov, Slimane Bekki, Laurent Bopp, Pascale Braconnot, Patrick Brockmann, Patricia Cadule, Camille Contoux, Anne Cozic, David Cugnet, Jean-Louis Dufresne, Christian Éthé, Marie-Alice Foujols, Josefine Ghattas, Didier Hauglustaine, Rong-Ming Hu, Masa Kageyama, Myriam Khodri, Nicolas Lebas, Guillaume Levavasseur, Marion Marchand, Catherine Ottle, Philippe Peylin, Adriana Sima, Sophie Laval-Szopa, Rémi Thiéblemont, Nicolas N. Vuichard, and Olivier Boucher. Implementation of the CMIP6 Forcing Data in the IPSL-CM6A-LR Model. Journal of Advances in Modeling Earth Systems, 12(4) :e2019MS001940, March 2020.

[18]   G. M. Martin, P. Peyrille, R. Roehrig, C. Rio, M. Caian, G. Bellon, F. Codron, J.-P. Lafore, D. E. Poan, and A. Idelkadi. Understanding the West African Monsoon from the analysis of diabatic heating distributions as simulated by climate models. Journal of Advances in Modeling Earth Systems, 9(1) :239–270, March 2017.

[19]   Juliette Mignot, Frédéric Hourdin, Julie Deshayes, Olivier Boucher, Guillaume Gastineau, Ionela Musat, Martin Vancoppenolle, Jérôme Servonnat, Arnaud Caubel, Frederique Cheruy, Sébastien Denvil, Jean-Louis Dufresne, Christian Éthé, Laurent Fairhead, Marie-Alice Foujols, Jean-Yves Grandpeix, Guillaume Levavasseur, Olivier Marti, Matthew B Menary, Catherine Rio, Clément Rousset, and Yona Silvy. The Tuning Strategy of IPSL-CM6A-LR. Journal of Advances in Modeling Earth Systems, 13(5), May 2021.

Schémas numériques / Advection / Dynamique

[20]   Sarvesh Dubey, Thomas Dubos, Hourdin Frédéric, and Harish Upadhyaya. On the inter-comparison of two tracer transport schemes on icosahedral grids. Applied Mathematical Modelling, 39 :4828–4847, 2015.

[21]   T. Dubos, S. Dubey, M. Tort, R. Mittal, Y. Meurdesoif, and F. Hourdin. DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility. Geosc. Model Dev., 8 :3131–3150, October 2015.

[22]   F. Hourdin and A. Armengaud. The use of finite-volume methods for atmospheric advection of trace species. part i : Test of various formulations in a general circulation model. Mon. Wea. Rev., 127 :822–837, 1999.

Couche limite de surface

[23]   S. Aït-Mesbah, J. L. Dufresne, F. Cheruy, and F. Hourdin. The role of thermal inertia in the representation of mean and diurnal range of surface temperature in semiarid and arid regions. GRL, 42 :7572–7580, sep 2015.

[24]   A. Berg, K. Findell, B. Lintner, A. Giannini, S.I. Seneviratne, B. van den Hurk, R. Lorenz, A. Pitman, S. Hagemann, A. Meier, F. Cheruy, A. Ducharne, S. Malyshev, and P. C. D. Milly. Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nature Climate Change, 6 :869–874, 2016.

[25]   A. Campoy, A. Ducharne, F. Cheruy, F. Hourdin, J. Polcher, and J. C. Dupont. Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. Journal of Geophysical Research : Atmospheres, 118(19) :10,725–10,739, 2013.

[26]   F. Cheruy, A. Campoy, J.-C. Dupont, A. Ducharne, F. Hourdin, M. Haeffelin, M. Chiriaco, and A. Idelkadi. Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim. Dyn., 40 :2251–2269, May 2013.

[27]   F. Cheruy, J. L. Dufresne, S. Ait Mesbah, J. Y. Grandpeix, and F. Wang. Role of soil thermal inertia in surface temperature and soil moisture-temperature feedback. Journal of Advances in Modeling Earth Systems, 9(8) :2906–2919, 2017.

[28]   Gerhard Krinner. Impact of lakes and wetlands on boreal climate. Journal of Geophysical Research (Atmospheres), 108 :4520, Aug 2003.

[29]   Gerhard Krinner, Olivier Boucher, and Yves Balkanski. Ice-free glacial northern Asia due to dust deposition on snow. Climate Dynamics, 27 :613–625, Nov 2006.

[30]   Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nand er Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu. ESM-SnowMIP : assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 11 :5027–5049, Dec 2018.

[31]   R. Lorenz, D. Argueso, M. G. Donat, A. J. Pitman, B. Hurk, A. Berg, D. M. Lawrence, F. Cheruy, A. Ducharne, S. Hagemann, A. Meier, P. C. D. Milly, and S. I. Seneviratne. Influence of land ? ? ?atmosphere feedbacks on temperature and precipitation extremes in the glace ? ? ?cmip5 ensemble. Journal of Geophysical Research : Atmospheres, 121(2) :607–623, 2016.

[32]   H.-Y. Ma, S. A. Klein, S. Xie, C. Zhang, S. Tang, Q. Tang, C. J. Morcrette, K. Van Weverberg, J. Petch, M. Ahlgrimm, L. K. Berg, F. Cheruy, J. Cole, R. Forbes, W. I. Gustafson, M. Huang, Y. Liu, W. Merryfield, Y. Qian, R. Roehrig, and Y.-C. Wang. Causes : On the role of surface energy budget errors to the warm surface air temperature error over the central u.s. Journal of Geophysical Research : Atmospheres, pages n/a–n/a, 2018. 2017JD027194.

[33]   M. Ménégoz, G. Krinner, Y. Balkanski, O. Boucher, A. Cozic, S. Lim, P. Ginot, P. Laj, H. Gallée, P. Wagnon, A. Marinoni, and H. W. Jacobi. Snow cover sensitivity to black carbon deposition in the Himalayas : from atmospheric and ice core measurements to regional climate simulations. Atmospheric Chemistry & Physics, 14 :4237–4249, Apr 2014.

[34]   C. J. Morcrette, K. Van Weverberg, H.-Y. Ma, M. Ahlgrimm, E. Bazile, L. K. Berg, A. Cheng, F. Cheruy, J. Cole, R. Forbes, W. I. Gustafson Jr, M. Huang, W.-S. Lee, Y. Liu, L. Mellul, W. Merryfield, Y. Qian, R. Roehrig, Y.-C. Wang, S. Xie, K.-M. Xu, C. Zhang, S. Klein, and J. Petch. Introduction to causes : Description of weather and climate models and their near-surface temperature errors in 5-day hindcasts near the southern great plains. Journal of Geophysical Research : Atmospheres, 2018. 2017JD027199.

[35]   H. J. Punge, H. Gallée, M. Kageyama, and G. Krinner. Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM. Climate of the Past, 8 :1801–1819, Nov 2012.

[36]   S.I Seneviratne and 18 co authors. Impact of soil-moisture climate feedbacks on cmip5 projections : First results from the glace-cmip5 experiment. Geophys. Res. Lett., 40 :5212 5217, 2013.

[37]   B. van den Hurk, H. Kim, G. Krinner, S. I. Seneviratne, C. Derksen, T. Oki, H. Douville, J. Colin, A. Ducharne, F. Cheruy, N. Viovy, M. J. Puma, Y. Wada, W. Li, B. Jia, A. Alessandri, D. M. Lawrence, G. P. Weedon, R. Ellis, S. Hagemann, J. Mao, M. G. Flanner, M. Zampieri, S. Materia, R. M. Law, and J. Sheffield. Ls3mip (v1.0) contribution to cmip6 : the land surface, snow and soil moisture model intercomparison project – aims, setup and expected outcome. Geoscientific Model Development, 9(8) :2809–2832, 2016.

[38]   K. Van Weverberg, C. J. Morcrette, J. Petch, S. A. Klein, H.-Y. Ma, C. Zhang, S. Xie, Q. Tang, W. I. Gustafson Jr, Y. Qian, L. K. Berg, Y. Liu, M. Huang, M. Ahlgrimm, R. Forbes, E. Bazile, R. Roehrig, J. Cole, W. Merryfield, W.-S. Lee, F. Cheruy, L. Mellul, Y.-C. Wang, K. Johnson, and M. M. Thieman. Causes : Attribution of surface radiation biases in nwp and climate models near the u.s. southern great plains. Journal of Geophysical Research : Atmospheres, pages n/a–n/a, 2018. 2017JD027188.

[39]   E. Vignon, F. Hourdin, C. Genthon, H. Gallée, E. Bazile, M.-P. Lefebvre, J.-B. Madeleine, and B. J. H. Van de Wiel. Antarctic boundary layer parametrization in a general circulation model : 1-D simulations facing summer observations at Dome C. J. Geophys. Res., 122 :6818–6843, July 2017.

[40]   E. Vignon, F. Hourdin, C. Genthon, B. J. H. Van de Wiel, H. Gallée, J.-B. Madeleine, and J. Beaumet. Modeling the Dynamics of the Atmospheric Boundary Layer Over the Antarctic Plateau With a General Circulation Model. J. of Adv. in Modeling Earth Systems, 10 :98–125, January 2018.

[41]   M. M. Vogel, R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B. J. J. M. Hurk, and S. I. Seneviratne. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3) :1511–1519, 2017.

[42]   F. Wang, F. Cheruy, and J.-L. Dufresne. The improvement of soil thermodynamics and its effects on land surface meteorology in the ipsl climate model. Geoscientific Model Development, 9(1) :363–381, 2016.

[43]   Fuxing Wang, Agnès Ducharne, Frédérique Cheruy, Min-Hui Lo, and Jean-Yves Grandpeix. Impact of a shallow groundwater table on the global water cycle in the ipsl land–atmosphere coupled model. Climate Dynamics, Jul 2017.

Modèle du thermique

[44]   F. Hourdin, F. Couvreux, and L. Menut. Parameterisation of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci., 59 :1105–1123, 2002.

[45]   Frederic Hourdin, Arnaud Jam, Catherine Rio, Fleur Couvreux, Irina Sandu, Marie-Pierre Lefebvre, Florent Brient, and Abderrahmane Idelkadi. Unified Parameterization of Convective Boundary Layer Transport and Clouds With the Thermal Plume Model. Journal of Advances in Modeling Earth Systems, 2019.

[46]   Frédéric Hourdin, Catherine Rio, Arnaud Jam, Abdoul-Khadre Traore, and Ionela Musat. Convective Boundary Layer Control of the Sea Surface Temperature in the Tropics. Journal of Advances in Modeling Earth Systems, 12(6), June 2020.

[47]   C. Rio and F. Hourdin. A thermal plume model for the convective boundary layer : Representation of cumulus clouds. J. Atmos. Sci., 65 :407–425, 2008.

[48]   C. Rio, F. Hourdin, F. Couvreux, and A. Jam. Resolved Versus Parametrized Boundary-Layer Plumes. Part II : Continuous Formulations of Mixing Rates for Mass-Flux Schemes. Boundary-layer Meteorol., 135 :469–483, June 2010.

[49]   Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Éthé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Laval-Szopa, and Delphine Tardif. IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations. Geoscientific Model Development, 13(7) :3011–3053, July 2020.

Schéma statistique de nuages

[50]   S. Bony and K. A. Emanuel. A parameterization of the cloudiness associated with cumulus convection ; evaluation using TOGA COARE data. J. Atmos. Sci., 58 :3158–3183, 2001.

[51]   A. Jam, F. Hourdin, C. Rio, and F. Couvreux. Resolved Versus Parametrized Boundary-Layer Plumes. Part III : Derivation of a Statistical Scheme for Cumulus Clouds. Boundary-layer Meteorol., 147 :421–441, June 2013.

[52]   J. Jouhaud, J.-L. Dufresne, J.-B. Madeleine, F. Hourdin, F. Couvreux, N. Villefranque, and A. Jam. Accounting for vertical subgrid-scale heterogeneity in low-level cloud fraction parameterizations. J. of Adv. in Modeling Earth Systems, 10(11) :2686–2705, 2018.

[53]   Jean-baptiste Madeleine, Frédéric Hourdin, Jean-yves Grandpeix, Catherine Rio, Jean-Louis Dufresne, Etienne Vignon, Olivier Boucher, Dimitra Konsta, Frederique Cheruy, Ionela Musat, Abderrahmane Idelkadi, Laurent Fairhead, Ehouarn Millour, Marie-pierre Lefebvre, Lidia Mellul, Nicolas Rochetin, Florentin Lemonnier, Ludovic Touzé-peiffer, and Marine Bonazzola. Improved Representation of Clouds in the Atmospheric Component LMDZ6A of the IPSL-CM6A Earth System Model. Journal of Advances in Modeling Earth Systems, 12(10), October 2020.

Convection profonde et poches

[54]   J.-Y. Grandpeix and J.-P. Lafore. A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part I : The Models. Journal of Atmospheric Sciences, 67 :881–897, April 2010.

[55]   J.-Y. Grandpeix, J.-P. Lafore, and F. Cheruy. A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part II : 1D Simulations. Journal of Atmospheric Sciences, 67 :898–922, April 2010.

[56]   C. Rio, J.-Y. Grandpeix, F. Hourdin, F. Guichard, F. Couvreux, J.-P. Lafore, A. Fridlind, A. Mrowiec, R. Roehrig, N. Rochetin, M.-P. Lefebvre, and A. Idelkadi. Control of deep convection by sub-cloud lifting processes : the ALP closure in the LMDZ5B general circulation model. Clim. Dyn., 40 :2271–2292, May 2013.

[57]   Nicolas Rochetin, Fleur Couvreux, Jean-Yves Grandpeix, and Catherine Rio. Deep Convection Triggering by Boundary Layer Thermals. Part I : LES Analysis and Stochastic Triggering Formulation. J. Atmos. Sci., 71 :496–514, February 2014.

[58]   Nicolas Rochetin, Jean-Yves Grandpeix, Catherine Rio, and Fleur Couvreux. Deep Convection Triggering by Boundary Layer Thermals. Part II : Stochastic Triggering Parameterization for the LMDZ GCM. J. Atmos. Sci., 71 :515–538, February 2014.

Ondes de gravité / Relief sous-maille

[59]   A. de la Cámara and F. Lott. A stochastic parameterization of the gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42 :2071–2078, 2015.

[60]   A. de la Cámara, F. Lott, and M. Abalos. Climatology of the middle atmosphere in lmdz : Impact of source-related parameterizations of gravity wave drag. J. of Adv. in Modeling Earth Systems, 8(4) :1507–1525, 2016.

[61]   C. O. Hines. Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2 : Broad and quasi monochromatic spectra, and implementation. J. of Atmosph. and Solar-Terrestrial Phys., 59(4) :387–400, 1997.

[62]   F. Lott, L. Fairhead, F. Hourdin, and P. Levan. The stratospheric version of lmdz : Dynamical climatologies, arctic oscillation, and impact on the surface climate. Clim. Dyn., 25 :851–868, 2005.

[63]   F. Lott and L. Guez. A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res., 118 :8897–8909, 2013.

Méthodologies

[64]   Ara Arakelian and Francis Codron. Southern Hemisphere Jet Variability in the IPSL GCM at Varying Resolutions. Journal of the Atmospheric Sciences, 69(12) :3788–3799, December 2012.

[65]   Julien Cattiaux, Benjamin Quesada, Ara Arak ? ? ? ?lian, Francis Codron, Robert Vautard, and Pascal Yiou. North-Atlantic dynamics and European temperature extremes in the IPSL model : sensitivity to atmospheric resolution. Climate Dynamics, 40(9-10) :2293–2310, May 2013.

[66]   B. Charnay, F. Forget, R. Wordsworth, J. Leconte, E. Millour, F. Codron, and A. Spiga. Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. Journal of Geophysical Research : Atmospheres, 118(18) :10,414–10,431, 2013.

[67]   Francis Codron. Ekman heat transport for slab oceans. Climate Dynamics, 38(1-2) :379–389, 2012.

[68]   O. Coindreau, F. Hourdin, M. Haeffelin, A. Mathieu, and C. Rio. Assessment of Physical Parameterizations Using a Global Climate Model with Stretchable Grid and Nudging. Monthly Weather Review, 135 :1474–1489, 2007.

[69]   F. B. Diallo, F. Hourdin, C. Rio, A.-K. Traore, L. Mellul, F. Guichard, and L. Kergoat. The surface energy budget computed at the grid-scale of a climate model challenged by station data in west africa. J. of Adv. in Modeling Earth Systems, 9(7) :2710–2738, 2017.

[70]   Robert A Eagle, Camille Risi, Jonathan L Mitchell, John M Eiler, Ulrike Seibt, J David Neelin, Gaojun Li, and Aradhna K Tripati. High regional climate sensitivity over continental china constrained by glacial-recent changes in temperature and the hydrological cycle. Proceedings of the National Academy of Sciences, 110(22) :8813–8818, 2013.

[71]   I. Gomez-Leal, F. Codron, and F. Selsis. Thermal light curves of Earth-like planets : 1. Varying surface and rotation on planets in a terrestrial orbit. Icarus, 269 :98–110, May 2016.

[72]   Virginie Guemas and Francis Codron. Differing Impacts of Resolution Changes in Latitude and Longitude on the Midlatitudes in the LMDZ Atmospheric GCM. Journal of Climate, 24(22) :5831–5849, November 2011.

[73]   F. Hourdin and J.-P. Issartel. Sub-surface nuclear tests monitoring through the CTBT Xenon Network. Geophys. Res. Lett., 27 :2245–2248, 2000.

[74]   Gerhard Krinner, Julien Beaumet, Vincent Favier, Michel Déqué, and Claire Brutel-Vuilmet. Empirical Run-Time Bias Correction for Antarctic Regional Climate Projections With a Stretched-Grid AGCM. Journal of Advances in Modeling Earth Systems, 11 :64–82, Jan 2019.

[75]   Gerhard Krinner, Chloé Largeron, Martin Ménégoz, Cécile Agosta, and Claire Brutel-Vuilmet. Oceanic Forcing of Antarctic Climate Change : A Study Using a Stretched-Grid Atmospheric General Circulation Model. Journal of Climate, 27 :5786–5800, Aug 2014.

[76]   Nicolas Rochetin, Benjamin R. Lintner, Kirsten L. Findell, Adam H. Sobel, and Pierre Gentine. Radiative-Convective Equilibrium over a Land Surface. Journal of Climate, 27(23) :8611–8629, Dec 2014.

Transport aérosols

[77]   F. Hourdin, M. Gueye, B. Diallo, J.-L. Dufresne, J. Escribano, L. Menut, B. Marticoréna, G. Siour, and F. Guichard. Parameterization of convective transport in the boundary layer and its impact on the representation of the diurnal cycle of wind and dust emissions. Atmosph. Chemist. and Physics, 15 :6775–6788, June 2015.

[78]   H. Senghor, É. Machu, F. Hourdin, and A. Thierno Gaye. Seasonal cycle of desert aerosols in western Africa : analysis of the coastal transition with passive and active sensors. Atmosph. Chemist. and Physics, 17 :8395–8410, July 2017.

Isotopes

[79]   Svetlana Botsyun, Pierre Sepulchre, Yannick Donnadieu, Camille Risi, Alexis Licht, and Jeremy K Caves Rugenstein. Revised paleoaltimetry data show low tibetan plateau elevation during the eocene. Science, 363(6430) :eaaq1436, 2019.

[80]   Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu. Impacts of tibetan plateau uplift on atmospheric dynamics and associated precipitation δ 18 o. Climate of the Past, 12(6) :1401–1420, 2016.

[81]   A Cauquoin, P Jean-Baptiste, C Risi, É Fourré, B Stenni, and A Landais. The global distribution of natural tritium in precipitation simulated with an atmospheric general circulation model and comparison with observations. Earth and Planetary Science Letters, 427 :160–170, 2015.

[82]   Alexandre Cauquoin, Philippe Jean-Baptiste, Camille Risi, Élise Fourré, and Amaelle Landais. Modeling the global bomb tritium transient signal with the agcm lmdz-iso : A method to evaluate aspects of the hydrological cycle. Journal of Geophysical Research : Atmospheres, 121(21) :12–612, 2016.

[83]   Alexandre Cauquoin, Camille Risi, and Etienne Vignon. Importance of the advection scheme for the simulation of water 1 isotopes over Antarctica by atmospheric general circulation models : a case study for present-day and Last Glacial Maximum with LMDZ-iso. Earth and Planetary Science Letters, 2019.

[84]   C Risi, A Landais, R Winkler, and Françoise Vimeux. Can we determine what controls the spatio-temporal distribution of d-excess and 17 o-excess in precipitation using the lmdz general circulation model ? Climate of the Past, 9(5) :2173–2193, 2013.

[85]   Camille Risi, Sandrine Bony, Françoise Vimeux, Christian Frankenberg, David Noone, and John Worden. Understanding the sahelian water budget through the isotopic composition of water vapor and precipitation. Journal of Geophysical Research : Atmospheres, 115(D24), 2010.

[86]   Camille Risi, Sandrine Bony, Françoise Vimeux, and Jean Jouzel. Water-stable isotopes in the lmdz4 general circulation model : Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. Journal of Geophysical Research : Atmospheres, 115(D12), 2010.

[87]   Camille Risi, Joseph Galewsky, Gilles Reverdin, and Florent Brient. Controls on the water vapor isotopic composition near the surface of tropical oceans and role of boundary layer mixing processes. Atmospheric Chemistry and Physics, 19(19) :12235–12260, 2019.

[88]   Camille Risi, David Noone, John Worden, Christian Frankenberg, Gabriele Stiller, Michael Kiefer, Bernd Funke, Kaley Walker, Peter Bernath, Matthias Schneider, et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues : 1. comparison between models and observations. Journal of Geophysical Research : Atmospheres, 117(D5), 2012.

[89]   Xiaoyi Shi, Camille Risi, Tao Pu, Jean-lionel Lacour, Yanlong Kong, Ke Wang, Yuanqing He, and Dunsheng Xia. Variability of Isotope Composition of Precipitation in the Southeastern Tibetan Plateau from the Synoptic to Seasonal Time Scale. Journal of Geophysical Research : Atmospheres, 125(6) :e2019JD031751, 2020.

[90]   H. Steen-Larsen, C. Risi, M. Werner, K. Yoshimura, and V. Masson-Delmotte. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations. Journal of Geophysical Research : Atmospheres, 122(1) :246–263, January 2017.

Analyse climatique

[91]   Pedro Arboleda-Obando, Agnès Ducharne, Frederique Cheruy, Anne Jost, Josefine Ghattas, Jeanne Colin, and Camille Nous. Influence of hillslope flow on hydroclimatic evolution under climate change. Earth’s Future, 10 :e2021EF002613, September 2022.

[92]   Hugo Bellenger, Jean-Philippe Duvel, Matthieu Lengaigne, and Phu Levan. Impact of organized intraseasonal convective perturbations on the tropical circulation. Geophysical Research Letters, 36 :L16703, Aug 2009.

[93]   Guillaume Gastineau, Fabio D’Andrea, and Claude Frankignoul. Atmospheric response to the north atlantic ocean variability on seasonal to decadal time scales. Climate dynamics, 40(9-10) :2311–2330, 2013.

[94]   Guillaume Gastineau, Blandine L’hévéder, Francis Codron, and Claude Frankignoul. Mechanisms determining the winter atmospheric response to the atlantic overturning circulation. Journal of Climate, 29(10) :3767–3785, 2016.

[95]   Gerhard Krinner, Christophe Genthon, Zhao-Xin Li, and Phu Le van. Studies of the Antarctic climate with a stretched-grid general circulation model. Journal of Geophysical Research, 102 :13,731–13,745, Jun 1997.

[96]   Zhongfang Liu, Camille Risi, and Francis Codron. Data for manuscript "Atmospheric forcing dominates winter Barents-Kara sea ice variability". 7 2022.

[97]   Zhongfang Liu, Camille Risi, Francis Codron, Xiaogang He, Christopher J. Poulsen, Zhongwang Wei, Dong Chen, Sha Li, and Gabriel J. Bowen. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern. Nature Communications, 12(1) :1519, March 2021.

[98]   Juan M. Lora, Jonathan L. Mitchell, Camille Risi, and Aradhna E. Tripati. North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum. Geophysical Research Letters, 44 :1051–1059, 2017.

[99]   Blandine L’hévéder, Francis Codron, and Michael Ghil. Impact of anomalous northward oceanic heat transport on global climate in a slab ocean setting. Journal of Climate, 28(7) :2650–2664, 2015.

[100]   M. Ménégoz, G. Krinner, Y. Balkanski, A. Cozic, O. Boucher, and P. Ciais. Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century. The Cryosphere, 7 :537–554, Mar 2013.

Transport inverse

[101]   F. Chevallier, M. Fisher, P. Peylin, S. Serrar, P. Bousquet, F. M. BréOn, A. ChéDin, and P. Ciais. Inferring CO2 sources and sinks from satellite observations : Method and application to TOVS data. Journal of Geophysical Research (Atmospheres), 110(D24) :D24309, Dec 2005.

[102]   N. Huneeus, F. Chevallier, and O. Boucher. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model. Atmospheric Chemistry & Physics, 12(10) :4585–4606, May 2012.

[103]   I. Pison, P. Bousquet, F. Chevallier, S. Szopa, and D. Hauglustaine. Multi-species inversion of CH4, CO and H2 emissions from surface measurements. Atmospheric Chemistry & Physics, 9(14) :5281–5297, Jul 2009.

[104]   Bo Zheng, Frederic Chevallier, Philippe Ciais, Yi Yin, Merritt N. Deeter, Helen M. Worden, Yilong Wang, Qiang Zhang, and Kebin He. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environmental Research Letters, 13(4) :044007, Apr 2018.

[105]   Bo Zheng, Frederic Chevallier, Philippe Ciais, Yi Yin, and Yilong Wang. On the Role of the Flaming to Smoldering Transition in the Seasonal Cycle of African Fire Emissions. Geophysical Research Letters, 45(21) :11,998–12,007, Nov 2018.

Ajouter un commentaire

Vous pouvez ajouter un commentaire en complétant le formulaire ci-dessous. Le format doit être plain text. Les commentaires sont modérés.

Enter the word