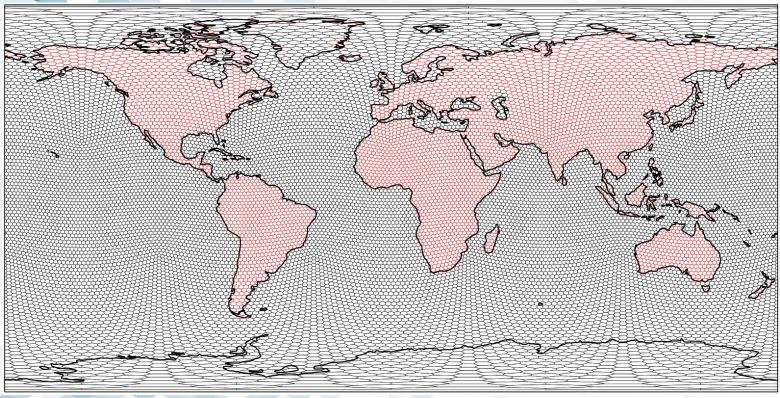
Simulating the variations of carbon dioxide in the global atmosphere on a hexagonal grid with the LMDZ - Dynamico model

03/10/2023

Zoé Lloret PhD student

Frédéric Chevallier Thesis director **Anne Cozic** Co-director Introduction


Unstructured grid

CO₂ transport

Perspectives

Conclusion

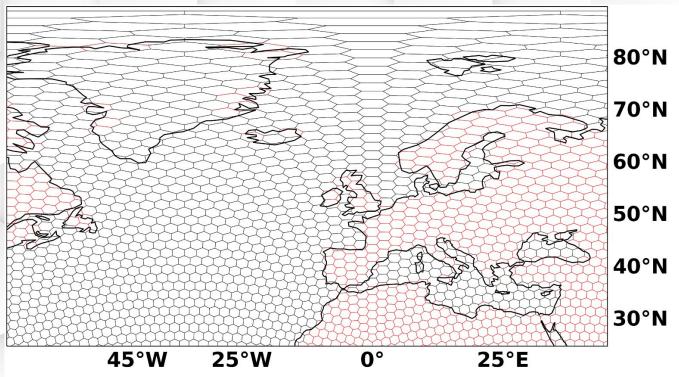
Dynamico grid

Chrs

Introduction

Unstructured grid

CO2 transport

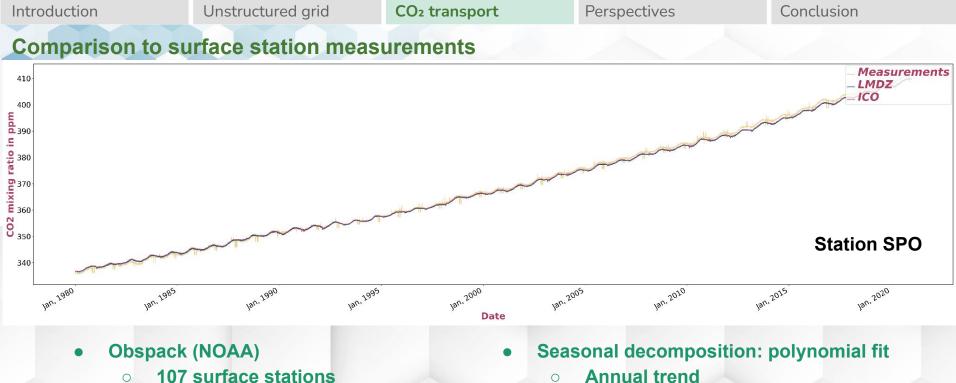

Perspectives

Conclusion

Zoom - Dynamico grid

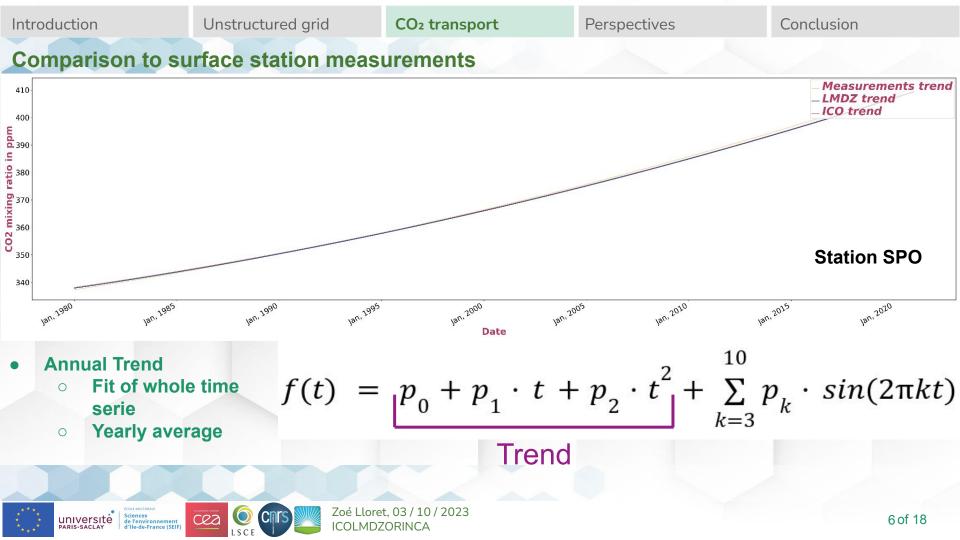
• Grid

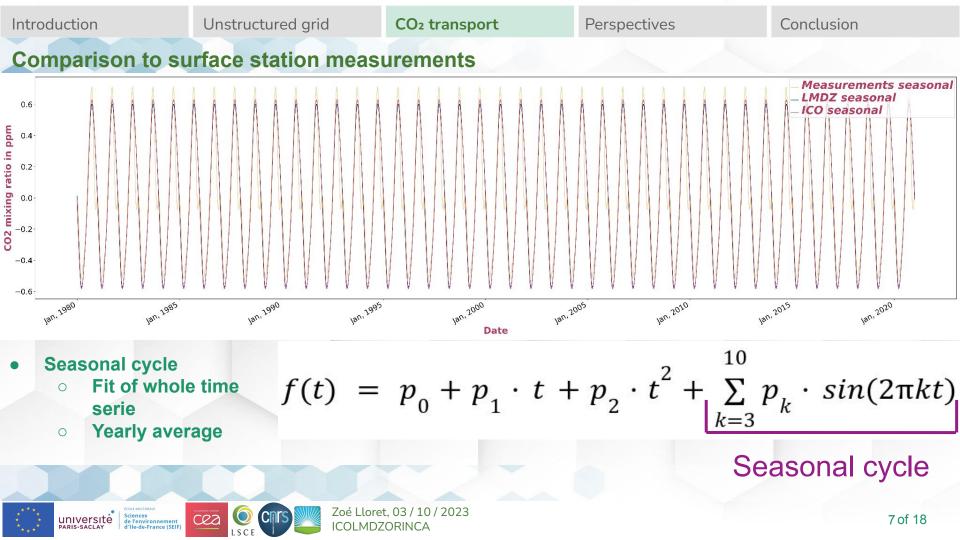
- Icosahedral cells
- Hexagon surface
- Constant resolution
- New dynamical core
 - Clean code
 - Same equations

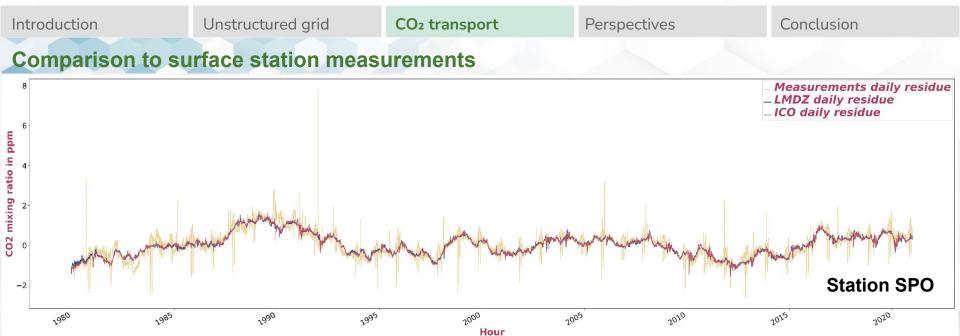


Introduc	ntroduction Unstructured grid		CO ₂ transport	Perspectives	Conclusion	
Grid c	comparison					
	Resolution Number of cells per level Resolution in degrees		LMDZ	Dy	Dynamico Nbp 40 - 79 levels	
			144x143x79	Nbp 40		
			20592 16002 22% gain			
			2.5° longitude by 1.2 latitude		2.5° longitude by 1.25° latitude	
	Cell size at e	quator	278 km by 140 km	Hexago	n side 110 km	
Poles			Singularity, resolution clustering No singularity, no charged resolution			
	Speed per me (Coupled mo		820 seconds		seconds 0% gain	

Global 0

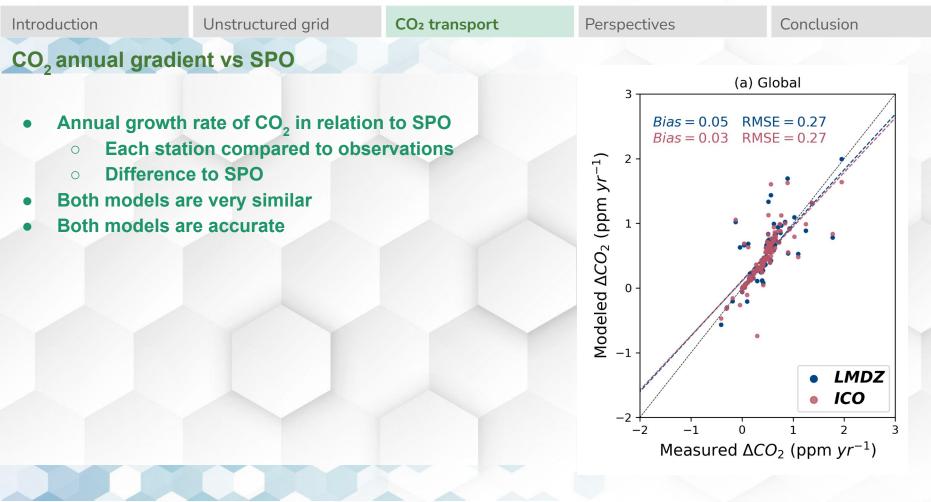

cea


Sciences

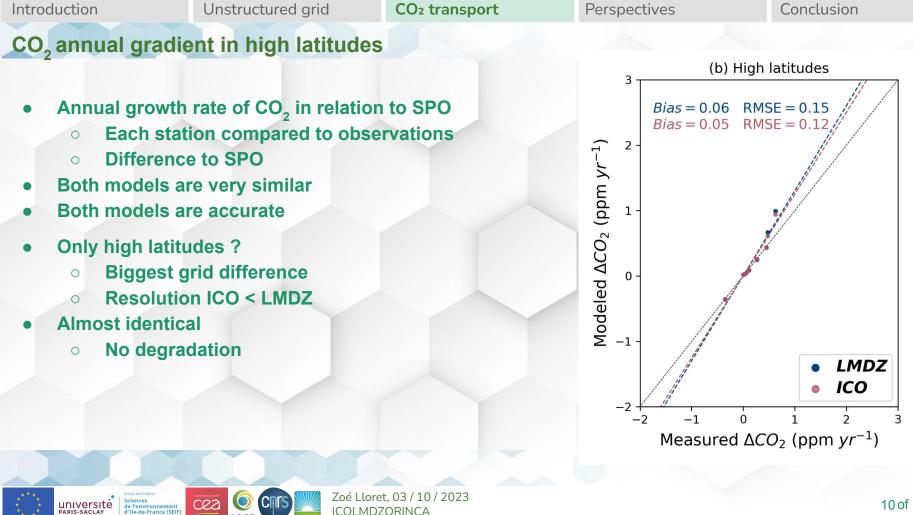

de l'environnement d'île-de-France (SEIF)

UNIVERSITE

- **Annual trend**
- **Seasonal cycle** 0
- **Residue (Synoptic variability)** 0


- Remove the trend and seasonal cycle
 - **High frequency variability** 0
 - Then: average per day 0

Residue (t) = Obs(t) - f(t)


Sciences

UNIVERSITE

UNIVERSITE

ICOLMDZORINCA

universite

de l'environnement d'île-de-France (SEIF)

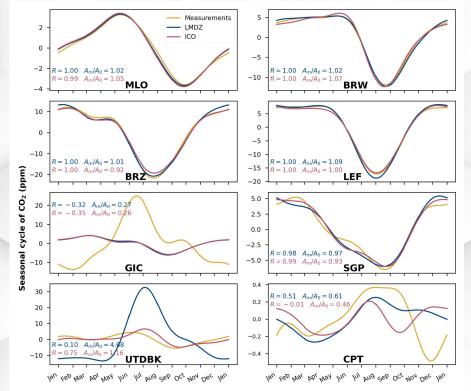
Zoé Lloret. 03 / 10 / 2023

ICOLMDZORINCA

Modeling the average seasonal cycles at the surface

- Accuracy of seasonal cycle capture
 - Correlation coefficients
- Vast majority of stations identical
- Some stations not captured by either
- Rare station with only 1 good model

cea


Sciences

de l'environnement

d'île-de-France (SEIF)

universite

PARIS-SACLAY

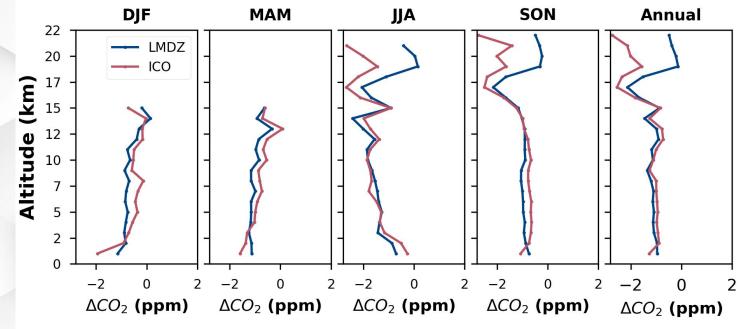
11 of 18

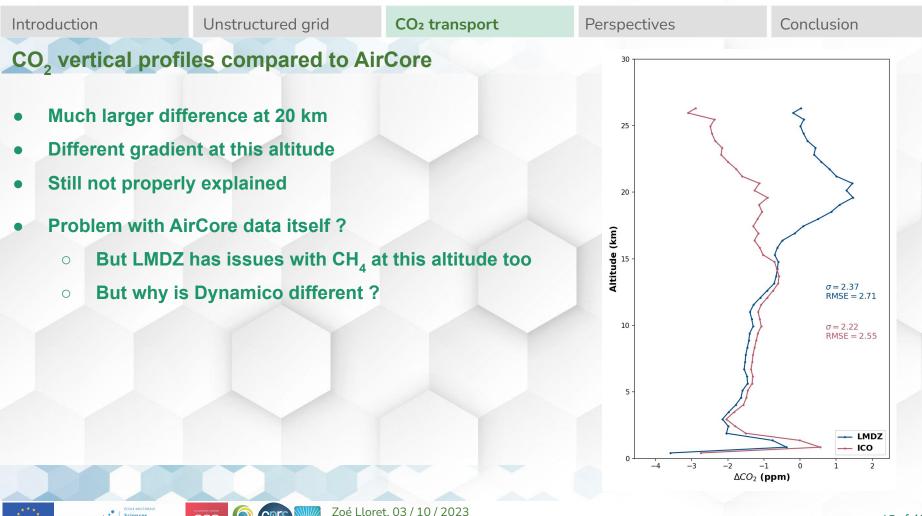
Introduction		Unstructured grid	CO ₂ transport	Perspectives	Conclusion		
Сс	Correlation of modelled seasonal cycles						
1.0		[• • • • • • • • • • • • • • • • • • • •		
cient 8.0							
0.6 0.4							
ation 0.2							
Pearson correlation coefficient +0	I,						
UOS -0.2							
Ö –0.4	.1						

UTTERA UTTERA ONE CONC CON

-0.6

Introduction	Unstructured grid	CO2 transport	Perspectives	Conclusion
Correlation / Norma	alized Standard Do	eviation (NSD) of th	e modeled synoptic	variability
 Worse than seas Expected at our resolution 	1188		······································	
 Average : R_{both} = 0.47 NSD_{ICO} = 1. NSD_{LMDZ} = 	••• LMDZ ••• ICO	PARK SSI- SSI- SSI- SSI- RYO CPT CPT SSI- SSI- SSI- SSI- SSI- SSI- SSI- SSI	AMACK TARKY	MBRA MBRA AMM AMM AMM AMM AMM AMM AMM AMM AMM A
	S- 4 Normalized SD 1	 		
	0	······································		· · · · · · · · · · · · ·

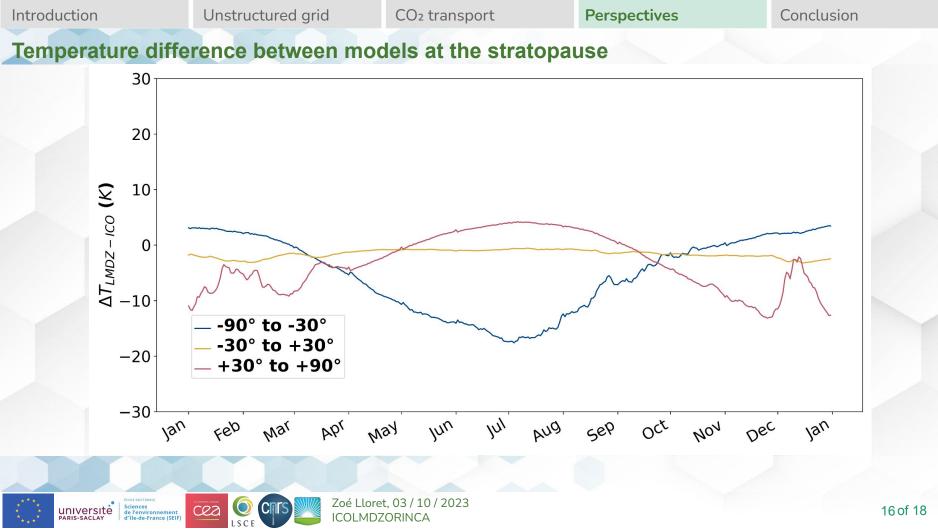

UNIVERSITE PARIS-SACLAY


Introduction	Unstructured grid	CO ₂ transport	Perspectives	Conclusion

CO, vertical profiles compared to aircrafts

- Both have general bias
- Diverge in high altitude

ICOLMDZORINCA


Sciences

de l'environnement d'île-de-France (SEIF)

UNIVERSITE

Cez

15 of 18

Model's improvement

- Dynamico
 - Sponge layer
 - Fine tuning (ongoing work)
 - Integrating it into the inverse system
 - Scaling LMDZ for inversion
 - **256x256**
 - Powered by GPUs
 - Reaching computing limits...

Introduction

Conclusion

ICOLMDZORINCA operational for direct simulations

- Validated for CO₂ transport near the surface
 - Work left to do for vertical
- Just needs more people experimenting with it !

