

Tropical Cyclones in Global High-Resolution Simulations using the IPSL Model

¹LSCE / IPSL

³LMD / IPSL

²IPSL

e ar second en or

Preprint in Climate Dynamics

Stella Bourdin¹, Sébastien Fromang^{1,} Arnaud Caubel¹, Josephine Ghattas², Yann Meurdesoif¹, Thomas Dubos³

October 3rd, 2023 — LMDZ days

Tropical cyclones

- « cyclone » en français = ouragan, typhon
- Vents et precip. Intenses
- ~80-90 / an
- Impacts énormes:
 - Désastre le plus coûteux
 - Deuxième type de désastre le plus mortel (UNDDR)

Trajets et intensités des cyclones tropicaux

Echelle d'intensité des cyclones de Saffir-simpson

Context: Why do we need GCMs to study TCs?

- Risk associated with Tropical Cyclones (TCs) in the future remains uncertain (IPCC)
 - What sets the frequency? (Sobel et al., 2021)
- Observations are very scarce
 - 40 years of satellite observations
 - Challenge to obtain measurements within TCs.
- \rightarrow We need models to simulate TCs
 - → Global Climate Models (GCMs) <u>that simulate realistic TC climatologies</u> can be useful in investigating links between TCs and the environment
- Ability to simulate TC varies a lot among the models, but improves systematically with resolution (Roberts et al., 2020a)

At the IPSL ? TCs in previous versions of the IPSL model (coupled version)

Genesis points in the observations and the IPSL model, from Tory et al. (2013)

- No dedicated assessment.
- IPSL included in a number of CMIP comparaison, but never commented (and often removed because too low frequency)
- TC climatology highly flawed...
 - Very low frequency
 - No TC in the North Atlantic and South Pacific
- ... for understandable reasons
 - Coarse resolution, mainly
- Slight improvement with resolution.

The IPSL-CM6A-ATM model

Lon-Lat **DYNAMICO** OR Physics: LMDz Land surface: ORCHIDEE

Dynamico allows increasing the resolution.

Is the IPSL model at high

resolution a suitable tool

for studying TCs?

 \rightarrow Opportunity to study new phenomena!

HighResMIP simulations

Lon-Lat

]		
LR		HR	
2°		¹ /2°	
200 km			
ICO]		
LR	MR	HR	VHR
2°	1°	1/2°	1/4°
200 km	100 km	50 km	25 km

HighResMIP framework:

- Atmosphere-only
- global
- forced SST
- 65 historical years
 - 1950-2014

TC tracked with UZ/TempestExtremes

(Zarzycki & Ullrich, 2017)

Results

- Activity is comparatively lower in simulation with the Lon-Lat core at same nominal resolution
 - Because effective resolution in the tropics is lower

- Activity is comparatively lower in simulation with the Lon-Lat core at same nominal resolution
 - Because effective resolution in the tropics is lower
- Frequency in Lon-Lat HR is below ICO-MR
 - Likely effect of dissipation

- Activity is comparatively lower in simulation with the Lon-Lat core at same nominal resolution
 - Because effective resolution in the tropics is lower
- Frequency in Lon-Lat HR is below ICO-MR
 - Likely effect of dissipation

DYNAMICO is an advantage because we can have higher resolution and lower dissipation

Global activity

Global activity

Activity increases globally with resolution, up to observed levels. Seasonnal cycle are good.

Other results

At the regional scale

- The distribution of TCs improves among the basins, and within them when resolution is increased.
- Frequency increases in all the basins.

At the TC scale

- Intensity increases, but not up to observed values
- The structure of the TC is better represented when resolution is increased.
- Intensification is not fast enough, except in the last 6 hours.

Increase in résolution brings huge improvement in the TC climatology In the North Atlantic in particular, and with the exception of the West Pacific

Zoom on two basins in ICO-VHR

1/ North Atlantic

1/ North Atlantic

1/ North Atlantic

2/ Western North Pacific

Frequency too low : 19TC/year instead of 26 TC/year Poorly correlated with large-scale environement

Genesis deficit in the south-west of the basin...

2/ Western North Pacific

Frequency too low : 19TC/year instead of 26 TC/year Poorly correlated with large-scale environement

Genesis deficit in the south-west of the basin...

(Climatology over the WNP cyclonic season)

2/ Western North Pacific

Frequency too low : 19TC/year instead of 26 TC/year Poorly correlated with large-scale environement

Genesis deficit in the south-west of the basin...

... Associated with a climatological humidity bias

Conclusion

TCs in the IPSL model at 25 km:

- 97 TCs/year
- Well distributed in the basins
- Up to category 2 in winds and 5 in pressure
- Realistic structure
- Especially good in the North Atlantic
- \rightarrow Model fit for most purpose
- Biases in the convection in the western pacific at high-resolution

Appendices

Roberts et al. 2020b (Figure 2)

TC activity at low- and high-resolution in 5 HighResMIP models *Thickness represent cyclonic activity level*

Roberts, Camp, Seddon et al. 2020b in Journal of Climate

Ability to simulate TCs varies among models. Increasing resolution improves TC climatology.

It works!

Example: The most intense TC in ICO-VHR

There are Tropical Cyclones in the simulations.

Surface Wind speed

Impact of irregular grid

Irregular grid in LonLat-HR makes difference with ICO-HR more proeminent near the equator

Figure 6. TC frequencies in each basin and each simulation and in the observation. Basins are displayed in order of decreasing frequencies in the observations.

Regional activity

With increasing resolution...

- Activity *¬* in all basins
- Geographical distribution
 improve

With disparities among basins, esp. WNP, see later.

Intensity & Structure

With increasing resolution, TCs become more intense, ...

... and the primary circulation tightens around the eye

Contour: Radial wind

TC properties : Composites

Contour: Radial wind --- Shading: Azimuthal wind

Contour: Temperature anomaly --- Shading: Vertical velocity

- 32 - 28 - 24 - 20 s - 16 - 12 - 8 - 4

-10

-6 ×

⊢4

-2

V-0

With increasing resolution...

- TC structure become more intense,
- Primary circulation <u>tightens</u> around the eye,
- <u>Realism</u> improves.

Lifecycle

Inter-annual variability

Correlations increase with resolution, and are robust only for NATL & ENP.

North Atlantic basin

ONI and NTC vs. Large-scale environment variables (Linear regression drawn when correlation significant.)

- In the North Atlantic:
 - Link between ENSO and large-scale environment is well reproduced
 - Link between large-scale environment and TC activity is well depicted
- Inter-annual variability and its correlation with ENSO is well simulated

ENSO

- ENSO is an important mode of variability for TC activity in the Pacific and Atlantic basins
- Affects TC large-scale environment
 - Sea-surface temperature
 - Wind shear
 - Humidity
 - Circulation

Variable	Data	WNP	ENP	NATL
ACE	Obs	0.47*	0.16*	-0.23*
	ICO-VHR	0.01	0.15*	-0.20*
NTC	Obs	0.00	0.21*	-0.30*
	ICO-VHR	0.0	0.00	-0.34*

Table 4. Correlations coefficient (and associated p-value in parenthesis) between the yearly ACE or NTC and the mean of the ONI index between August to October of the same year. * and bold denote significant correlations (p < 5e - 2).

Correlation between ONI index and TC activity (Bold = significant)

Link between ENSO and TC activity is well reproduced in the NATL, not in the Pacific

Western North Pacific

Deficit in genesis is associated with a deficit in GPI, for which deficit in humidity is mainly responsible

A problem with convection in the warm pool?

Biases in ICO-VHR with respect to ERA5 Over the cyclonic season (July to October) (contour = ERA5, shading = difference)

very low
 Climatological circulation is subsident

• Associated with problem in large-scale circulation (zonal wind, vorticity)

In the WNP TC genesis area

Convective precipitation are

Dynamical bias is present at all resolutions, humidity & precip bias accentuates with increasing resolution.

(More variables at different resolutions in appendix)

RH 600

%

%

L _{0.0}

- -8

ERA5

VO850

Deficit de vorticité à toutes les résolutions

Precipitations convectives

mm/j

i/um

Déficit de précipitation convective à toute les résolutions, s'accentue avec la résolution

· 10

- 10

- 8

6

- 2

mm/j 4

mm/j

HR

Vitesses verticales 850hPa

/!\w>0 = descente et biais de w>0 veut dire que ça monte pas assez ou descend trop Remplacer um/s par Pa/s

ERA5

Déficit de vitesse verticales de basse altitude à toutes les résolutions

dans la warm pool!

0.0500

- 0.0389 - 0.0278 - 0.0167 - 0.0056 \$ - --0.0056 \$

-0.0167

-0.0278

-0.0389

-0.0500

0.0500

0.0389

-0.0167

-0.0278 -0.0389

-0.0500

0.0500

- 0.0389 - 0.0278 - 0.0167

0.0056 × -0.0056 ⊑

-0.0167

-0.0389

0.0500

- 0.0389 - 0.0278 - 0.0167

-0.0056 % -0.0056 ⊑

-0.0167

-0.0278

-0.0389

-0.0500

LR

Vitesses verticale 600hPa

Déficit de vitesse verticales de moyenne altitude à toutes les résolutions

Vitesses verticales 200hPa

MR

0.00

0.00

0.04

0.02

0.00

-0.02

-0.04

a/s

0.0389

0.0278

0.0167

-0.0056 % --0.0056 ម្នា

-0.0167 -0.0278

-0.0389

-0.0500

MR

Déficit de vitesse verticales de haute altitude à toutes les résolutions

A 200hPa, le champ zonal montre un pic principal au bon endroit, le pic secondaire est moins bien reproduit.

Le pic principal à 45°N est au bon endroit quoiqu'un peu fort et un peu au nord. Le pic secondaire est trop faible, trop au nord et problématique en VHR.

U200

Latitude [degrees_north]

Pic principal assez bien reproduit, minimum à 20°N trop au nord en VHR

V200

m/s

V850

ERA5

- 4.000

m/s

m/s

-0.818

-1.909

-3.000

m/s

