

How well does LMDZ6 represent the physical processes of the Stalactite Cyclone (NAWDEX IOP6) ?

David Flack¹, Gwendal Rivière¹, Ionela Musat², Romain Roehrig³, Sandrine Bony², Julien Delanoë⁴, Quitterie Cazenave⁴ and Jacques Pelon⁴

- 1. LMD-ENS
- 2. LMD-Sorbonne Université
- 3. Météo France
- 4. LATMOS

Running a climate model in a weather forecast mode (T-AMIP exp): comparison between LMDZ6 et Arpege-Climat

	ARPEGE-Climat (run by R. Roehrig)	LMDZ6 (run by I. Musat)
CMIP 6	T127 (~1.1°)	2.5° x 1.7°
HRES	T359 (~0.5°)	zoom to 0.5° over N Atlantic; rest of domain 1.1°
Physics	CMIP 6	CMIP 6
Hindcast initiation dates	27, 28, 29 Sep and 1, 2 Oct 2016 at 00 UTC	27, 28, 29 Sep and 1, 2 Oct 2016 at 00 UTC
Initial Conditions	ECMWF analysis	ECMWF analysis
Hindcast length	10 days	10 days
Vertical output	Pressure levels every 25 hPa	Pressure levels every 25 hPa
Temporal output	3 h	3 h
Data considered after	T + 18 h	T + 18 h

SLP minimum and tracks

• In LRES, delayed deepening and track too much eastward

• HRES: rather good scenario in track and intensity compared to ECMWF analysis

Cyclogenesis stage

Weak surface Northern precursor in LRES – stronger in HRES as in ECMWF analysis

Mature Stage of the Cyclone

Potential vorticity at 850 hPa (shadings); SLP (contours)

Delayed interaction of the surface cyclone with high stratospheric PV air in LRES.

Vertical velocity statistics across the cyclone

Observations: Ice Water Content: F7

Ice Water Content retrieved from radar/lidar using the variational algorithm of Delanoë and Hogan (2008) with adaptations from Cazenave (2019).

Observations: Ice Water Content: F7

Ice Water Content retrieved from radar/lidar using the variational algorithm of Delanoë and Hogan (2008) with adaptations from Cazenave (2019).

• Improvement of the shape and intensity of the PDF in LMD6 by adding the liquid water content, while there is almost no change for Arpege-CM6

With combined radar-lidar data we can determine if the particles are ice, super-cooled liquid and mixed phase

Ice Water fraction compared to Liquid Water fraction

	Observations	LMDZ-LR	LMDZ-HR	ARPEGE-LR	ARPEGE-HR
Super-cooled liquid [LWC > 0.99(TOTAL)]	1.5 %	1.2 %	0.5 %	0.0 %	0.0 %
Mixed phase [0.01(TOTAL) < LWC < 0.99(TOTAL)]	0.2 %	72.8 %	79.7 %	41.4 %	61.6 %
Ice [LWC < 0.01(TOTAL)]	98.3 %	26.0 %	19.8 %	58.6 %	38.4 %

Where TOTAL = ICE + SNOW + LIQUID

There is less water in ARPEGE compared to LMDZ, and too much water in LMDZ compared to the observations, regardless of threshold used to identify ice.

Summary

- How well do LMDZ6 and Arpege-CM6 represent the two stages of the Stalactite Cyclone?
 - 0.5° (HRES) can represent the dynamics well
 - CMIP6 resolution can do the mature stage but not cyclogenesis
- What is the main difference between LMDZ6 and Arpege-CM6 in the representation of the Stalactite Cyclone?
 - LMDZ6 creates a deeper cyclone, because of a stronger heating rate.
- What information did we gain from the observations?
 - The sum of ice water content and liquid water content is higher in LMDZ6 than Arpege-CM6 and in that sense closer to observations in terms of the amount of condensates.
 - However, LMDZ6 strongly overestimates the fraction of supercooled liquid water compared to observations

Supplementary Slides

The Stalactite Cyclone

frequency

0.020 0.016

0.012

0.008 0.004

0.000

-0.004

-0.008 -0.012 -0.016

-0.020

 10^{0}

 10^{0}

IWC differences: ARPEGE - LMDZ: F

More ice LMDZ is associated with stronger diabatism at all resolutions

Radar CFADs: F7

ARPEGE has better representation of reflectivity as it is more sensitive to the larger ice particles compared to the smaller liquid particles which are more numerous in LMDZ