Sensibilité de LMDZ à la représentation des flux turbulents à l'interface air-mer

P. Braconnot et al.

Résultats de la thèse d'Olivier Torres

IPSL/LSCE

Journées LMDZ, 11 - 12 Juin 2018

Les flux turbulents et nous

Thèse Olivier Torres Représentation dans les modèles de climat :

- Formulation
- Niveau de complexité

Représentation schématique des flux océan-atmosphère

Rôle dans le système climatique :

- énergétique globale,
- variabilité interannuelle à multidecennale,
- changement de climat

Éxpériences pour tester l'impact des paramétrisation et l'effet des rétroaction

Cadre très contraints:

SST, w, dQ dT large scale imposé

4/8

LMDz 1D : 79 niveaux, Pdt : 600 s

5 paramétrisations testées : LMDz, LMDz sans seuils, Core, Coare, LMDz gustiness

Théorie

$$z_{0X} = \beta \frac{\upsilon}{u_{*}} + \alpha \frac{u_{*}^{2}}{g} \longrightarrow C_{XN} = \frac{\kappa^{2}}{Log\left(\frac{z}{z_{0m}}\right) * Log\left(\frac{z}{z_{0X}}\right)} \longrightarrow C_{X} = f(s) * f(s)$$

$$LMDz: Modélisation des longueurs de rugosité \qquad Cas instables : C_{D} = C_{D}f(s) f(s)$$

$$C_{D} = C_{D}f(s) f(s) \qquad C_{D} = C_{D}f(s) f(s) \qquad C_{H} = C_{Q} = C_{Q}ef(s) + (1 + C_{R}^{Y})^{\frac{1}{Y}}$$

$$C_{H} = C_{Q} = C_{Q}ef(s) + f(s) \qquad V = 1,25; \quad V_{E} = \frac{1,25}{C_{Q}N} + \frac{1,25}$$

Coefficienter déprésentande da classed de crent

Terme de gustiness : ; U Terme de gustiness : $w_g = \beta W_*$; U= $\sqrt{u^2 + W_g^2}$

Basée sur des ajustements aux observations Coefficients dépendent du C_{DN} fixé en fonction du vent Calcul d'un Z_{Θ} diagnostique Seuil sus leurestr ($U_{V \in ht}O$, 5. m. s)

LMDz gustiness

Cohérence avec les paramétrisations des thermiques et poches froides.

Ajout gustiness (Redelsperger et al. (2000)) :

Hourdine, Rio et al.

	C _H (*10 ⁻³)	%	Latent Flux (W.m²)	%
LMDz sans seuils	1,60	0,00	90,31	0,00
Coare	2,05	28,13	102,30	13,28
Core	1,84	14,60	99,35	10,01
LMDz gust	1,33	-17,09	109,40	21,14
LMDz	1,36	-15,35	88,27	-2,26

	C _D (*10 ⁻³)	%	Wind stress (* 10 ⁻³ N.m ²)	%
LMDz sans seuils	1,18	0,00	12,33	0,00
Coare	2,52	113,40	16,68	35,28
Core	2,45	107,55	17,94	45,50
LMDz gust	1,14	-3,73	16,89	36,98
LMDz	1,16	-1,44	12,38	0,41

Cas CINDY-DYNAMO (gustiness)

Test C_{DN} =cte=0.0011

- Effet global al pour ASTD
- Effet régional « Warm pool » pour ANLW

-[] impact différent sur la redistribution interbassins et équateur pôles de la chaleur latente par la circulation de grande échelle

test suppression pramétrisation vents faibles Cdrh (ANLW-AREF)

Effet thermodynamique prépondérant

Effet thermodynamique prépondérant et dynamique

Mode	Name	C _H (*10 ⁻³) ± 0,01	Latent heat flux (W.m ²) ± 3,3	%	Net TOA (W.m²) ± 0,6
	AREF	1,18	136,20	0,00	-2,47
	ASTD	0,97	128,30	-5,80	-0,51
AGCM	ACTN	1,48	145,30	6,68	-4,49
	ACTU	1,10	130,10	-4,48	-0,46
	ANLW	0,96	124,10	-8,88	0,84
Mode	Name	C _H (*10 ⁻³) ± 0,01	Latent heat flux (W.m ²) ± 1,9	%	Net TOA (W.m ²) ± 0,28
Mode	Name CREF	C _H (*10 ⁻³) ± 0,01 1,22	Latent heat flux (W.m ²) ± 1,9 132,50	% 0,00	Net TOA (W.m ²) ± 0,28 -0,43
Mode	Name CREF CSTD	С _н (*10 ⁻³) ± 0,01 1,22 1,01	Latent heat flux (W.m ²) ± 1,9 132,50 134,00	% 0,00 1,13	Net TOA (W.m ²) ± 0,28 -0,43 0,59
Mode OAGCM	Name CREF CSTD CCTN	С _н (*10 ⁻³) ± 0,01 1,22 1,01 1,51	Latent heat flux (W.m ²) ± 1,9 132,50 134,00 129,30	% 0,00 1,13 -2,42	Net TOA (W.m ²) ± 0,28 -0,43 0,59 -1,43
Mode OAGCM	Name CREF CSTD CCTN CCTU	С _н (*10 ⁻³) ± 0,01 1,22 1,01 1,51 1,10	Latent heat flux (W.m ²) ± 1,9 132,50 134,00 129,30 133,50	% 0,00 1,13 -2,42 0,75	Net TOA (W.m ²) ± 0,28 -0,43 0,59 -1,43 -0,12

Couplé:

- flux latents similaires car équilibre le même flux solaire entrant
- Ajustement sur autres variables (température, humidité..)

(B) Test suppression pramétrisation

+ pas de changement
notable de transport
équateur pôles,
contrairement au cas
ATM forcé.
Ajustement
énergétique en CPL

Pour l'océan le long de l'équateur :

CSTD : réduction de CD « wind evaporation feedback « - [] E/W SST gradient [] Bjerknes faible [] faible modification de la pente de la thermocline CNLW : réduction de CD + vent en surface - [] Wind évaporation + Bjerknes - [] modification de la pente de la thermocline

15 ATM WEST BOX

- Analyse effet du changement de paramétrisation de surface dans IPSLCM6
 - Simulations 1D, ATM, CPL
 - Avec et sans gust
 - Ancienne et nouvelle paramétrisation.

Question : peut-on détecter l'impact de ce changement de paramétrisation au regard de l'ensemble des changement du modèle

- Effet sur les structures de SST et transports
- Effet sur les caractéristiques de la variabilité .

