Décomposition de l'influence de l'AMOC sur l'atmosphère dans des simulations avec LMDZ

Guillaume Gastineau¹, Blandine L'Hévéder², Francis Codron², Claude Frankignoul¹

> ¹LOCEAN/IPSL ²LMD/IPSL

Atlantic decadal climate variability

Atlantic Multidecadal Oscillation (AMO) in K

The climate show some decadal variability over the Atlantic Ocean.

Has been involved for: -> various climate phenomenon such as tropical cyclone, NAO, rainfall, ect... -> potential predictability at decadal scales

Observations limited : coupled models are studied. -> IPSL-CM5A

The AMOC in IPSL-CM5A

- IPSL-CM5A-LR (low resolution), 500 yr preindustrial control simulation.
- AMOC has a 20yr multidecadal variability in IPSL-CM5A-LR,
- Decadal variability of AMOC linked to subpolar gyre currents (Escudier et al., 2013).

Atmospheric response to AMOC in IPSL-CM5A

Z500 JFM (in m) regressed onto AMOC-PC1, AMOC-PC1 leads by 9 yr

• Role of the meridional SST gradient over the western Atlantic region.

Gastineau and Frankignoul, Clim. Dyn., 2012

Questions:What is the cause of the atmospheric response?Do sea-ice anomalies play a role?Does some remote influence from tropics also play a role?

Experimental set-up

-> Ensemble simulation using LMDZ (atmospheric component of IPSL-CM5A-LR) forced by SST, sea-ice and surface sea-ice temperature from the coupled model.

Experiment Name	Ensemble size	SST conditions	Sea-ice
CTRL	75	Climatology	Climatology
ALL	75	Anomalies AMOC+ everywhere	Anomalies AMOC+ everywhere
N-ATL	75	Anomalies AMOC+ <i>in Atlantic</i> North of 20°N	Climatology
N-ATL+SIC	75	Anomalies AMOC+ <i>in Atlantic</i> North of 20°N	Anomalies AMOC+ <mark>x3</mark> in Atlantic and Arctic
N-ATL _N	75	Anomalies AMOC+ in Atlantic North of 45°N	Climatology
N-ATL _S	75	Anomalies AMOC+ between 20°N and 45°N	Climatology

Each member : October 1st - - - > April 30th

Experimental set-up

Model version :

• LMDZOR 96x96 AR4 physics (atmospheric component of IPSL-CM5A-LR)

-> Simulations performed in local (LOCEAN) and ada (IDRIS)

Main issue :

- Difficult to find the same LMDZ as IPSL-CM5A-LR
- Warm bias over sea-ice regions

Modification:

 Prescribed temperature over sea-ice through limit.nc

SST boundary condition

SST and sea ice (SIC) anomaly = time evolving anomaly given by the regression onto AMOC-PC1 (lag 9 yr)

Focus on the season February-March (FM) when the atmospheric response is maximum.

LMDZOR simulations to reproduce IPSL-CM5A

Z500 Regression in FM for IPSL-CM5A

ALL - CTRL

- Similar NAO-like response but slightly overestimated in forced simulation
 -> SST and SIC forcing are too large in the forced simulation
 - -> 75 members not enough to capture the amplitude of the response
 - -> difference in the mean climate may change the response

Influence of Atlantic SST and Sea ice

Projection Z500 anomalies onto the IPSL-CM5A AMOC-PC1 regression

Summary:

Late winter NAO-like signal seems to be due to :

- midlatitude SST anomalies
- Arctic SIC anomalies

Effect of North Atlantic SST

Stratospheric pathway

Which region is the most important?

SSTA (in K)

Z500 FM (in m)

-24 -20 -16 -12 -8 -4 4 8 12 16 20 24

Conclusion and discussion

- The SST and sea ice anomalies north of 20°N are the cause of the NAO-like response to AMOC in late winter.
- The atmospheric response to the AMOC is weak and difficult to simulate
- The response to SST anomalies is due to :
 - 1. The role of the SST onto baroclinicity and the associated jet stream shift
 - 2. The coupling with the stratosphere that remains to be clarified
- The sea ice and SST both have a comparable effect