

La physique de LMD dans WRF

L. Fita¹, P. Drobinski, F. Hourdin, L. Farihead

¹Laboratorie de Météorologie Dynamique, CNRS, UPMC-Jussieu, Paris, France ²Laboratorie de Météorologie Dynamique, IPSL, Ecole Polytechnique, CNRS, Palisseau, France

Journée LMDZ, Jussieu. France – 30 Juin 2014

Contact: Iluis.fita@Imd.jussieu.fr

• GCMs start to run at LAM resolutions

- GCMs start to run at LAM resolutions
- GCMs physics and dynamics have to be adapted/re-written

- GCMs start to run at LAM resolutions
- GCMs physics and dynamics have to be adapted/re-written
- LAM full primitive equations dynamics

- GCMs start to run at LAM resolutions
- GCMs physics and dynamics have to be adapted/re-written
- LAM full primitive equations dynamics
- Inclusion of GCM physics on LAM way to help on GCMs update

- GCMs start to run at LAM resolutions
- GCMs physics and dynamics have to be adapted/re-written
- LAM full primitive equations dynamics
- Inclusion of GCM physics on LAM way to help on GCMs update
- Challenge: Inclusion of LMDZ (GCM) physics in WRF (LAM)

- GCMs start to run at LAM resolutions
- GCMs physics and dynamics have to be adapted/re-written
- LAM full primitive equations dynamics
- Inclusion of GCM physics on LAM way to help on GCMs update
- Challenge: Inclusion of LMDZ (GCM) physics in WRF (LAM)
- Use of WRF primitive-equation dynamics in combination with LMDZ physics

1. Perform a flexible introduction of LMDZ physics in WRF

- 1. Perform a flexible introduction of LMDZ physics in WRF
- 2. Perform an 'easy to use' implementation

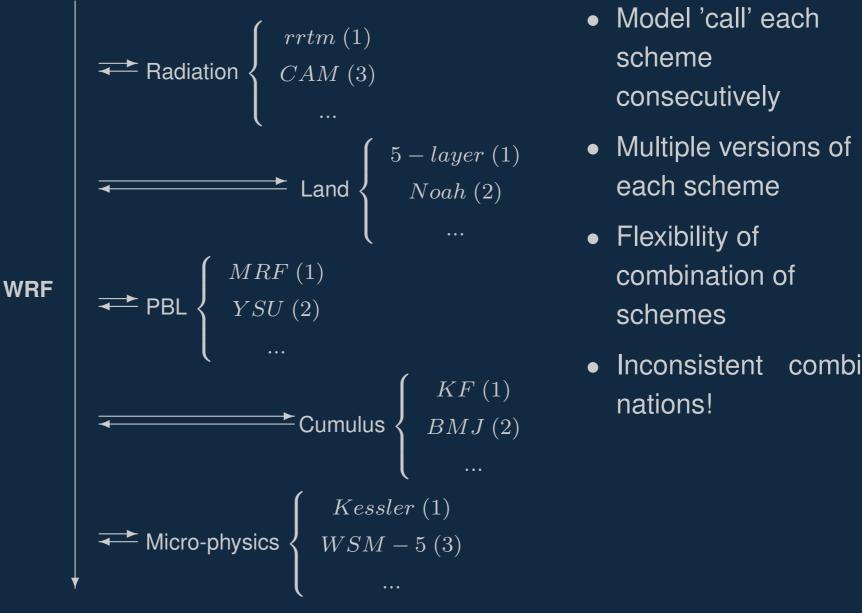
- 1. Perform a flexible introduction of LMDZ physics in WRF
- 2. Perform an 'easy to use' implementation
- 3. Perform an 'easy to update' (both models) implementation

Challenges

- 1. Perform a flexible introduction of LMDZ physics in WRF
- 2. Perform an 'easy to use' implementation
- 3. Perform an 'easy to update' (both models) implementation
- 4. Technical aspects:
 - Minimal changes in LMDZ code
 - Use of WRF compilation structure/framework

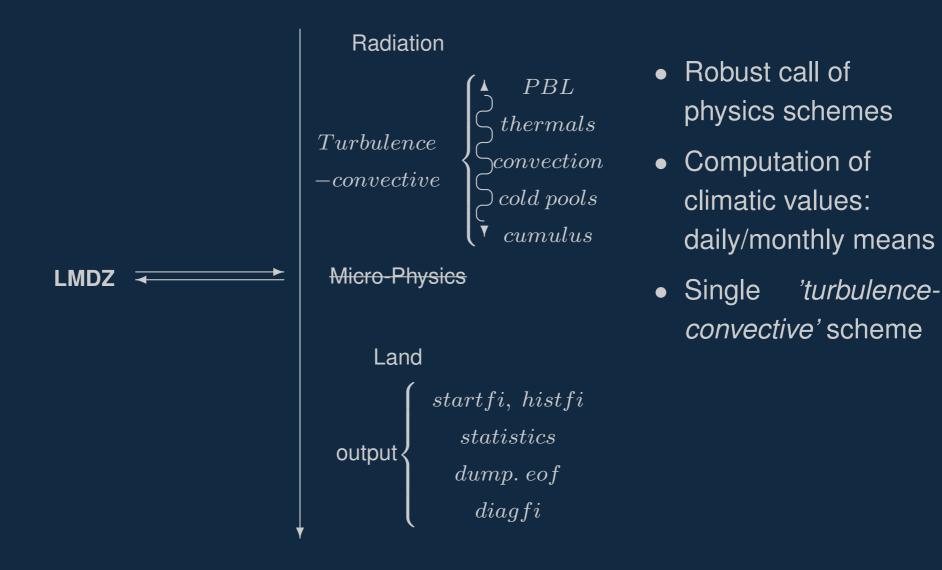
Challenges

- 1. Perform a flexible introduction of LMDZ physics in WRF
- 2. Perform an 'easy to use' implementation
- 3. Perform an 'easy to update' (both models) implementation
- 4. Technical aspects:
 - Minimal changes in LMDZ code
 - Use of WRF compilation structure/framework
- 5. Usability aspects:
 - Use LMDZ physics as a new WRF set of parameterizations
 - Preserve WRF flexibility and capabilities


Technical differences

- WRF code is very flexible:
 - fully modular: no mixture of dynamics, physics, i/o
 - fully F90 code: pointer, data-structures, namelist, ...
 - all variables, domain dimensions and data is kept in a Fortran data structure called grid, which is managed with an ASCII file called Registry

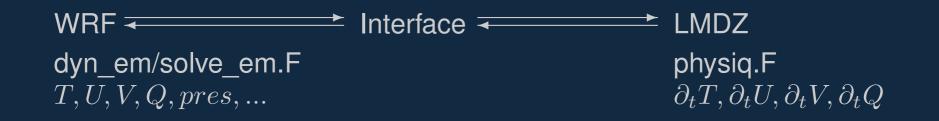
Technical differences


- WRF code is very flexible:
 - fully modular: no mixture of dynamics, physics, i/o
 - fully F90 code: pointer, data-structures, namelist, ...
 - all variables, domain dimensions and data is kept in a Fortran data structure called grid, which is managed with an ASCII file called Registry
- LMDZ code is less flexible:
 - not fully modular: mixture of physics & i/o
 - F77 & F90 code: static grid dimensions, use of 'SAVE'

Models' structure

- Model 'call' each scheme consecutively
- combination of schemes
- Inconsistent combinations!

Models' structure



• LMDZ is a full set of physical schemes, deactivation of all WRF schemes!!

- LMDZ is a full set of physical schemes, deactivation of all WRF schemes!!
- A WRF↔LMDZ interface is introduced in WRF code:

- LMDZ is a full set of physical schemes, deactivation of all WRF schemes!!
- A WRF↔LMDZ interface is introduced in WRF code:

- LMDZ is a full set of physical schemes, deactivation of all WRF schemes!!
- A WRF↔LMDZ interface is introduced in WRF code:

• Inclusion of LMDZ variables in the WRF structure

- LMDZ is a full set of physical schemes, deactivation of all WRF schemes!!
- A WRF↔LMDZ interface is introduced in WRF code:

- Inclusion of LMDZ variables in the WRF structure
- Utilization only of WRF initial and boundary conditions

1. WRF using LMDZ physics: working

- 1. WRF using LMDZ physics: working
- 2. LMDZ receiving WRF initial conditions: working
 - Orography variables for the orographic scheme: not done
 - GHG gases? *ozone*, *CO*₂, *CH*₄, *NO*₂, *CFC* 11, *CFC* 12, aerosols?: not done nor thought
 - WRF does not support p_top = 0. Add an extra vertical level used only by LMDZ? : not done nor thought

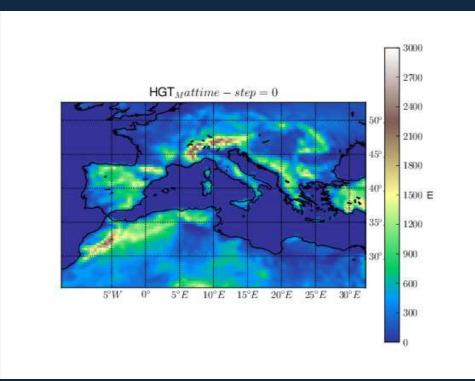
- 1. WRF using LMDZ physics: working
- 2. LMDZ receiving WRF initial conditions: working
 - Orography variables for the orographic scheme: not done
 - GHG gases? *ozone*, *CO*₂, *CH*₄, *NO*₂, *CFC* 11, *CFC* 12, aerosols?: not done nor thought
 - WRF does not support p_top = 0. Add an extra vertical level used only by LMDZ? : not done nor thought
- 3. LMDZ output in WRF output: working
 - Statistic variables: not done nor thought
 - COSP outputs: not done nor thought

- 1. WRF using LMDZ physics: working
- 2. LMDZ receiving WRF initial conditions: working
 - Orography variables for the orographic scheme: not done
 - GHG gases? *ozone*, *CO*₂, *CH*₄, *NO*₂, *CFC* 11, *CFC* 12, aerosols?: not done nor thought
 - WRF does not support p_top = 0. Add an extra vertical level used only by LMDZ? : not done nor thought
- 3. LMDZ output in WRF output: working
 - Statistic variables: not done nor thought
 - COSP outputs: not done nor thought
- 4. Updating of the boundary conditions: done

- 1. WRF using LMDZ physics: working
- 2. LMDZ receiving WRF initial conditions: working
 - Orography variables for the orographic scheme: not done
 - GHG gases? *ozone*, *CO*₂, *CH*₄, *NO*₂, *CFC* 11, *CFC* 12, aerosols?: not done nor thought
 - WRF does not support p_top = 0. Add an extra vertical level used only by LMDZ? : not done nor thought
- 3. LMDZ output in WRF output: working
 - Statistic variables: not done nor thought
 - COSP outputs: not done nor thought
- 4. Updating of the boundary conditions: done
- 5. restart outputs: done

- 1. WRF using LMDZ physics: working
- 2. LMDZ receiving WRF initial conditions: working
 - Orography variables for the orographic scheme: not done
 - GHG gases? *ozone*, *CO*₂, *CH*₄, *NO*₂, *CFC* 11, *CFC* 12, aerosols?: not done nor thought
 - WRF does not support p_top = 0. Add an extra vertical level used only by LMDZ? : not done nor thought
- 3. LMDZ output in WRF output: working
 - Statistic variables: not done nor thought
 - COSP outputs: not done nor thought
- 4. Updating of the boundary conditions: done
- 5. restart outputs: done
- 6. Automatize updating/upgrading of WRF and LMDZ: not done

- 1. WRF using LMDZ physics: working
- 2. LMDZ receiving WRF initial conditions: working
 - Orography variables for the orographic scheme: not done
 - GHG gases? *ozone*, *CO*₂, *CH*₄, *NO*₂, *CFC* 11, *CFC* 12, aerosols?: not done nor thought
 - WRF does not support p_top = 0. Add an extra vertical level used only by LMDZ? : not done nor thought
- 3. LMDZ output in WRF output: working
 - Statistic variables: not done nor thought
 - COSP outputs: not done nor thought
- 4. Updating of the boundary conditions: done
- 5. restart outputs: done
- 6. Automatize updating/upgrading of WRF and LMDZ: not done
- 7. WRF+LMDZ compiled in parallel: not done


- 1. WRF using LMDZ physics: working
- 2. LMDZ receiving WRF initial conditions: working
 - Orography variables for the orographic scheme: not done
 - GHG gases? *ozone*, *CO*₂, *CH*₄, *NO*₂, *CFC* 11, *CFC* 12, aerosols?: not done nor thought
 - WRF does not support p_top = 0. Add an extra vertical level used only by LMDZ? : not done nor thought
- 3. LMDZ output in WRF output: working
 - Statistic variables: not done nor thought
 - COSP outputs: not done nor thought
- 4. Updating of the boundary conditions: done
- 5. restart outputs: done
- 6. Automatize updating/upgrading of WRF and LMDZ: not done
- 7. WRF+LMDZ compiled in parallel: not done
- 8. couplings with ORCHIDEE, NEMO, INCA: not done nor thought

 Test of LMDZ+WRF coupling on severe events along the Mediterranean basin

- Test of LMDZ+WRF coupling on severe events along the Mediterranean basin
- Validate outputs using observations from HyMeX project

- Test of LMDZ+WRF coupling on severe events along the Mediterranean basin
- Validate outputs using observations from HyMeX project
- Use same Mediterranean domain for all the cases

- Test of LMDZ+WRF coupling on severe events along the Mediterranean basin
- Validate outputs using observations from HyMeX project
- Use same Mediterranean domain for all the cases

- dimensions: $130 \times 80 \times 39$
- resolution (equator): $0.35^{\circ}, 0.35^{\circ}$
- projection: regular lat-lon
- domain center: $N 39.0^{\circ}, 10^{\circ}$

- Test of LMDZ+WRF coupling on severe events along the Mediterranean basin
- Validate outputs using observations from HyMeX project
- Use same Mediterranean domain for all the cases
- 4 different cases (preliminary results from 3 here presented)

- Test of LMDZ+WRF coupling on severe events along the Mediterranean basin
- Validate outputs using observations from HyMeX project
- Use same Mediterranean domain for all the cases
- 4 different cases (preliminary results from 3 here presented)

case	simulation period	description
Superstorm ^a	10-12/xi/2001	strongest W cyclone [Fita, 2007, Ann. Geo.]
medic950116 ^a	13-18/i/1995	1995 medicane <i>[Fita, 2007, NHESS]</i>
Cévennes96 ^a	17-21/ix/1996	Heavy pr SW France [Berthou, 2014, QJRMS]
IOP15	18-22/x/2012	Strong convec. in Valencia and pr in Cévennes

^anot a HyMeX case

- Test of LMDZ+WRF coupling on severe events along the Mediterranean basin
- Validate outputs using observations from HyMeX project
- Use same Mediterranean domain for all the cases
- 4 different cases (preliminary results from 3 here presented)
- Ensemble of 8 members to test WRF and WRF+LMDZ performance. 5-day regional runs centered at the peak of the event. Boundary and initial conditions from ECMWF ERA-Interim

Regional extreme events

- Test of LMDZ+WRF coupling on severe events along the Mediterranean basin
- Validate outputs using observations from HyMeX project
- Use same Mediterranean domain for all the cases
- 4 different cases (preliminary results from 3 here presented)
- Ensemble of 8 members to test WRF and WRF+LMDZ performance. 5-day regional runs centered at the peak of the event. Boundary and initial conditions from ECMWF ERA-Interim

model	label	pbl	sfc layer	s/lw rad	cu	mp
WRF	control*	1	1	4	1	4
	mp	1	1	4	1	6
	rad1	1	1	3	1	4
	cu1	1	1	4	1	4
	pblsfc1	2	2	4	1	4
	shallow	1	1	4	3	4
WRF+LMDZ	wlmdza	У	У	m	е	-
	wlmdzb	y-w	y-w	m	e-t	-

• Validation using different perspectives: spatial (coherence) and station based (local extreme)

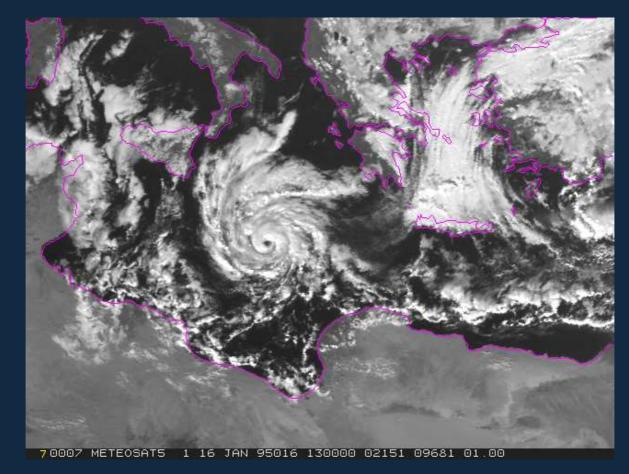
- Validation using different perspectives: spatial (coherence) and station based (local extreme)
- Analysis of systems development

- Validation using different perspectives: spatial (coherence) and station based (local extreme)
- Analysis of systems development
- Multi observational data-sets

- Validation using different perspectives: spatial (coherence) and station based (local extreme)
- Analysis of systems development
- Multi observational data-sets
- HyMeX IOP cases: international multi-observational platforms effort

- Validation using different perspectives: spatial (coherence) and station based (local extreme)
- Analysis of systems development
- Multi observational data-sets
- HyMeX IOP cases: international multi-observational platforms effort
- WRFmeas: Introduction of a LIDAR module in WRF

- Validation using different perspectives: spatial (coherence) and station based (local extreme)
- Analysis of systems development
- Multi observational data-sets
- HyMeX IOP cases: international multi-observational platforms effort
- WRFmeas: Introduction of a LIDAR module in WRF
- Only three cases presented: medicane January 1995 (cyclone charac.), Cévennes96 (spatial analysis), superstorm (station analysis and cyclone charac.)


- Validation using different perspectives: spatial (coherence) and station based (local extreme)
- Analysis of systems development
- Multi observational data-sets
- HyMeX IOP cases: international multi-observational platforms effort
- WRFmeas: Introduction of a LIDAR module in WRF
- Only three cases presented: medicane January 1995 (cyclone charac.), Cévennes96 (spatial analysis), superstorm (station analysis and cyclone charac.)
- wlmdzb simulations not available

• Medicane950116: Clearest tropical-like cyclone in the Mediterranean

- Medicane950116: Clearest tropical-like cyclone in the Mediterranean
 - Combination of baroclinic dynamics (upper level disturbance) and organized convection processes

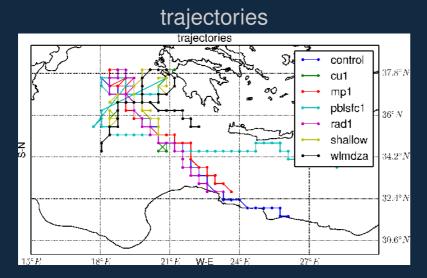
• Medicane950116: Clearest tropical-like cyclone in the Mediterranean

Combination of baroclinic dynamics (upper level disturbance) and organized convection processes

- Medicane950116: Clearest tropical-like cyclone in the Mediterranean
 - Combination of baroclinic dynamics (upper level disturbance) and organized convection processes
- Cévennes96: Extreme precipitation event at SW of France

- Medicane950116: Clearest tropical-like cyclone in the Mediterranean
 - Combination of baroclinic dynamics (upper level disturbance) and organized convection processes
- Cévennes96: Extreme precipitation event at SW of France
 - 19 September 1996 heavy precipitation (up to 160 mm/day) on the uphill Massif Central area at Cévennes
 - Moist Mediterranean air-mass flow orographic lifted to produce heavy precipitation in presence of an upper-level low and surface cold pool

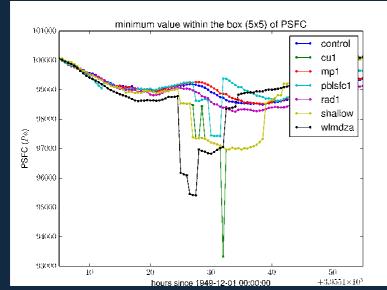
- Medicane950116: Clearest tropical-like cyclone in the Mediterranean
 - Combination of baroclinic dynamics (upper level disturbance) and organized convection processes
- Cévennes96: Extreme precipitation event at SW of France
 - 19 September 1996 heavy precipitation (up to 160 mm/day) on the uphill Massif Central area at Cévennes
 - Moist Mediterranean air-mass flow orographic lifted to produce heavy precipitation in presence of an upper-level low and surface cold pool
- Superstorm: Strongest cyclone on the Western Mediterranean basin

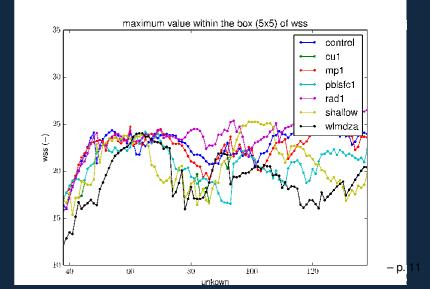

- Medicane950116: Clearest tropical-like cyclone in the Mediterranean
 - Combination of baroclinic dynamics (upper level disturbance) and organized convection processes
- Cévennes96: Extreme precipitation event at SW of France
 - 19 September 1996 heavy precipitation (up to 160 mm/day) on the uphill Massif Central area at Cévennes
 - Moist Mediterranean air-mass flow orographic lifted to produce heavy precipitation in presence of an upper-level low and surface cold pool
- Superstorm: Strongest cyclone on the Western Mediterranean basin
 - 700 deaths in Algiers, in Majorca island: 1 million trees down, persistent winds up to 30 m/s, 200 mm/day and open-sea waves up to 18m
 - Strong baroclinic environment: upper-level disturbance and surface thermal gradients

Analysis: medicane

• Analysis based on cyclone characteristics

Analysis: medicane

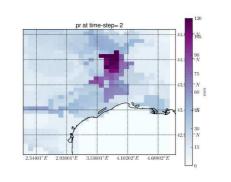

• Analysis based on cyclone characteristics


wlmdza presents a different trajectory and a sooner peak of the cyclone

 similar wind intensity for all the runs

maximum wind speed

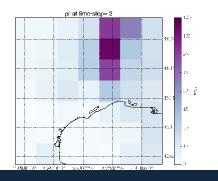
Analysis: Cévennes96

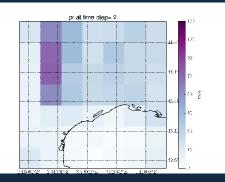

• Spatial analysis using gridded SAFRAN ([Quintana-Seguí, 2008, J. Appl. Met. Clim.] 8k, Météo France) observational dataset

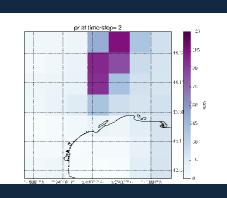
Analysis: Cévennes96

- Spatial analysis using gridded SAFRAN ([Quintana-Seguí, 2008, J. Appl. Met. Clim.] 8k, Météo France) observational dataset
- Analysis on the on 19 Septmber 1996: daily accumulated precipitation

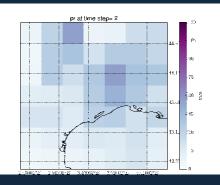
pr Results: Cévennes96

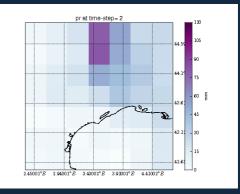

18 September:


• Miss of wlmdza simulation

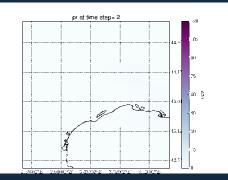

- Similar results from all WRF runs
- No difference with shallow cumulus scheme

control


pblscf1



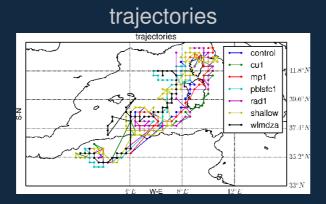
mp1


shallow

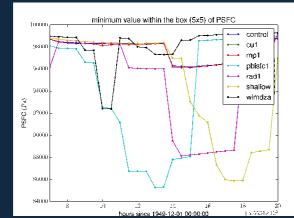
rad1

wlmdza

Analysis: Superstorm

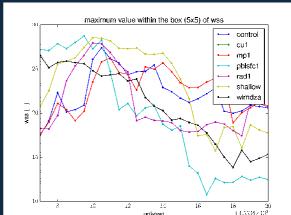

 Station-based analysis using EMAS Spanish operational surface stations (Agencia Estatial de Meteorología) in the Balearics (values each 10 minutes)

Analysis: Superstorm

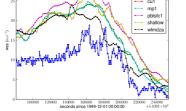

- Station-based analysis using EMAS Spanish operational surface stations (Agencia Estatial de Meteorología) in the Balearics (values each 10 minutes)
- Analysis on the on period 10 to 12 November 2001: instantaneous precipitation and surface winds

Analysis: Superstorm

- Station-based analysis using EMAS Spanish operational surface stations (Agencia Estatial de Meteorología) in the Balearics (values each 10 minutes)
- Analysis on the on period 10 to 12 November 2001: instantaneous precipitation and surface winds



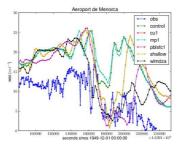
minimum psfc

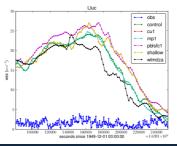

- wlmdza presents a different trajectory and a less deep cyclone
- wlmdza slightly weaker winds

maximum wind speed

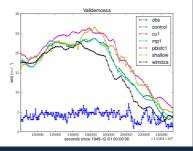


wss Results: Superstorm

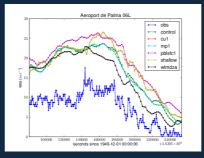

Menorca airport L19 mo nhisto Lluc Inca contro mp1 oblatet

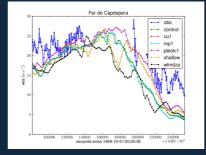


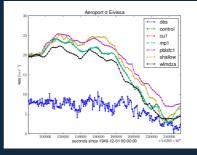
Alfàbia range

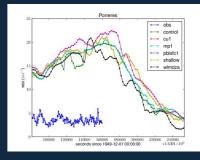


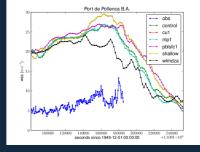
Menorca airport



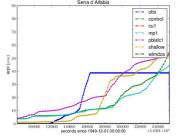

Valldemossa

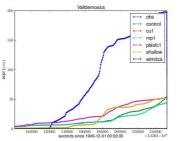

Palma airport 06L


Capdepera Lighthouse


Eivissa airport

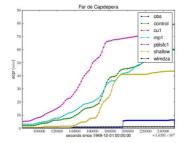
Porreres

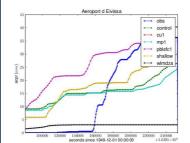

Pollença harbour


- Wind overestimation (excep. max) Similar temporal evolution - Huge station sensitivity

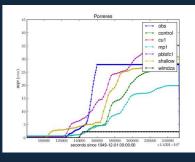
pr Results: Superstorm

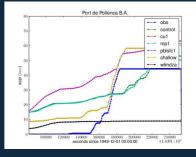
Menorca airport L19 Aerop, de Menorca 19 obs - obs - control - control - cu1 -- cu1 - mp1 - mp1 pblsfc1 - pblsfc1 shallow shallow - wimdza windza 100000 180000 2000 since 1949-12-01.00:00:00 Lluc Inca Inca Son Esteras obs obs - contro - control - cu1 - cu1 • mp1 - mp1 pblsfc1 oblatet shallow - wimdza Valldemossa Alfàbia range Serra d Alfab -- obs --- control - control


Menorca airport


Palma airport 06L

Aeroport de Palma 06 - obs - control - cu1 - mp1 - pblsfc1 shallow - windza


Capdepera Lighthouse


Eivissa airport

Porreres

Pollença harbour

- Underestimation of precipitation
- Smoother temporal evolution
- wlmdza too low

• Integration of LMDZ physics in WRF works!

- Integration of LMDZ physics in WRF works!
- First LAM runs using LMDZ physics

- Integration of LMDZ physics in WRF works!
- First LAM runs using LMDZ physics
 - Precipitation underestimated in both cases on wImdza simulation: Related to a wrong localization of the event?
 - Wind field not too much affected by physical packages

- Integration of LMDZ physics in WRF works!
- First LAM runs using LMDZ physics
 - Precipitation underestimated in both cases on wImdza simulation: Related to a wrong localization of the event?
 - Wind field not too much affected by physical packages
- Further work

- Integration of LMDZ physics in WRF works!
- First LAM runs using LMDZ physics
 - Precipitation underestimated in both cases on wImdza simulation: Related to a wrong localization of the event?
 - Wind field not too much affected by physical packages
- Further work
 - Finish WRF+LMDZ technical aspects: models code upgrade, parallel compilation
 - Improve, enhance and deepen case study analysis with multiple platform observations
 - Analyze system simulated evolutions (cyclone track, convective system formation...)
 - Enlarge case study analysis with other cases

Further steps

- Introduce the component in a multi-coupled system with NEMO, ORCHIDEE,...
- Split LMDZ physics in order to be able to run at higher real non-hydrostatic resolutions
- Perform RCM (medic950116, superstorm) and LES (Cevennes96, iop15) WRF simulations as reference runs for the cases
- Perform a MED-CORDEX run with the integrated platform
- Use the WRF+LMDZ platform as an element to improve LMDZ physical package

Further steps

- Introduce the component in a multi-coupled system with NEMO, ORCHIDEE,...
- Split LMDZ physics in order to be able to run at higher real non-hydrostatic resolutions
- Perform RCM (medic950116, superstorm) and LES (Cevennes96, iop15) WRF simulations as reference runs for the cases
- Perform a MED-CORDEX run with the integrated platform
- Use the WRF+LMDZ platform as an element to improve LMDZ physical package

Thank you for your attention