





# Validation of LMDZ CMIP5 simulations: Comparison with EI reanalyses



# Methode de comparaison Proprietes nuageuses LMDZ – Donnees AIRS

## Differentes resolutions horizontale et verticale:

- Donnees AIRS: 40 km x 40 km x 50 hPa
- Sorties LMDZ: 3.75 deg. (lon) x 1.9 deg. (lat) Niveaux verticaux a la tropopause: 304 hPa; 252 hPa; 212 hPa; 181 hPa; 155 hPa; 131 hPa; 110 hPa; 91 hPa.

#### Differente resolution temporelle:

AIRS observe des champs instantanes a 1h30 et 13h30.

# AIRS: pas d'information sur la distribution verticale des couches nuageuses

- Ne detecte pas les nuages dont l'epaisseur optique est inferieure a 0.05
- Detecte seulement le nuage le plus haut si son epaisseur optique est superieure a 0.05

## Colonne atmospherique de LMDZ





Chaque structure nuageuse est divisee en sous-sections (definies par les aires respectives des couches nuageuses).

Dans chaque sous-section on somme les epaisseurs optiques des couches contigues.

Le nuage est dit detectable si  $\sum \tau_i > 0.05$ Les nuages places sous les nuages detectes ne sont pas detectes.





cloud cover

Definition des nuages hauts

On calcule  $p_{cld}$  dans chaque sous-section.

C'est le milieu entre le sommet du nuage et l'atltitude ou l'epaisseur optique du nuage est egale a 3.

Si le nuage n'est pas suffisamment epais, on prend le sommet du nuage.

Le nuage est dit "haut" si  $p_{cld} < 440 Pa$ .

Aire A<sub>hc</sub> des nuages hauts de la structure nuageuse



Definition des nuages hauts, de glace et semitransparents

On calcule  $P_{cld}$  dans chaque sous-section.

On calcule  $T_{cld}$  dans chaque sous-section.

On calcule l'emissivite e dans chaque sous-

Un nuage est dit haut, de glace et semitransparent lorsque:

Aire  $A_{hist}$  des nuages hauts de glace et ST.  $A_{hist} = 0$ 



Variables definies pour chaque structure nuageuse:

- L'aire A de la structure nuageuse
- L'aire Ahc des nuages hauts

• L'aire *Ahist* des nuages hauts, de glace et semi-transparents

- La pression  $\mathsf{P}_{\mathsf{cld}}$
- La temperature  $T_{cld}$
- L'emissivite  $e = 1 exp(-\mathcal{T})$

• Ice water path 
$$IWP = \sum_{i} IWC_{i} \times \Delta z_{i}$$

On moyenne sur la structure nuageuse en ponderant les variables definies dans chaque sous-section par l'aire de la sous-section.

#### Moyenne des variables sur la maille de LMDZ



Sensitivity to microphysical processes

$$wv_{strato} = (1 - f_{tropo}).wv_{[CH_4]} + f_{tropo}.[wv(T_{TTL}) + wv_{con} + wv_{ov} + wv_{\mu\varphi}]$$

1. Sensitbilite a la temperature du changement de phase glace/eau liquide

- 2. Sensibilite a la sursaturation
- 3. Overshoots

# Couverture de nuages hauts

| Winter           | Tropics | NH  | SH  |
|------------------|---------|-----|-----|
|                  |         |     |     |
| NPV4_03          | 41%     | 24% | 19% |
| NPV4_12          | 42%     | 26% | 21% |
| NPV4_12tglaceOff | 42      | 24  | 19  |
| Guignard et al.  | 42%     | 22% | 14% |

| Summer           | Tropics | NH  | SH  |
|------------------|---------|-----|-----|
|                  |         |     |     |
| NPV4_03          | 37%     | 20% | 27% |
| NPV4_12          | 39%     | 23% | 27% |
| NPV4_12tglaceOff | 39%     | 23% | 26% |
| Guignard et al.  | 39%     | 26% | 23% |

# Proportion de nuages hauts

| Winter           | Tropics | NH  | SH  |
|------------------|---------|-----|-----|
|                  |         |     |     |
| NPV4_03          | 59%     | 44% | 28% |
| NPV4_12          | 63%     | 43% | 31% |
| NPV4_12tglaceOff | 63%     | 44% | 28% |
| Guignard et al.  | 62%     | 31% | 14% |

| Summer           | Tropics | NH  | SH  |
|------------------|---------|-----|-----|
|                  |         |     |     |
| NPV4_03          | 55%     | 50% | 36% |
| NPV4_12          | 59%     | 55% | 36% |
| NPV4_12tglaceOff | 58%     | 52% | 35% |
| Guignard et al.  | 58%     | 32% | 28% |

Trop de nuages hauts aux moyennes latitudes





# Couverture de nuages hauts de glace et semi-transparents

| Winter           | Tropics | NH | SH |
|------------------|---------|----|----|
|                  |         |    |    |
| NPV4_03          | 14      | 12 | 8  |
| NPV4_12          | 16      | 11 | 8  |
| NPV4_12tglaceOff | 15      | 11 | 8  |
| Guignard et al.  | 12      | 11 | 1  |

| Summer           | Tropics | NH | SH |
|------------------|---------|----|----|
|                  |         |    |    |
| NPV4_03          | 13      | 9  | 13 |
| NPV4_12          | 14      | 9  | 12 |
| NPV4_12tglaceOff | 15      | 9  | 12 |
| Guignard et al.  | 10      | 4  | 10 |

# Proportion de nuages hauts de glace et semi-transparents

| Winter           | Tropics | NH  | SH |
|------------------|---------|-----|----|
|                  |         |     |    |
| NPV4_03          | 21      | 23  | 12 |
| NPV4_12          | 23      | 19  | 12 |
| NPV4_12tglaceOff | 23      | 22% | 12 |
| Guignard et al.  | 18%     | 15% | 1% |

| Summer           | Tropics | NH  | SH  |
|------------------|---------|-----|-----|
|                  |         |     |     |
| NPV4_03          | 20%     | 22% | 18% |
| NPV4_12          | 21%     | 23% | 16% |
| NPV4_12tglaceOff | 21      | 23  | 17  |
| Guignard et al.  | 15%     | 4%  | 12% |

Trop de nuages hauts de glace et ST aux moyennes latitudes

# Epaisseur des nuages hauts de glace et semi-transparents

| Winter           | Tropics | NH   | SH   |
|------------------|---------|------|------|
|                  |         |      |      |
| NPV4_03          | 2980    | 3410 | 2810 |
| NPV4_12          | 2910    | 2920 | 2540 |
| NPV4_12tglaceOff | 2930    | 3190 | 2620 |
| Guignard et al.  | 4900    | 5500 | 5000 |

| Summer           | Tropics | NH   | SH   |
|------------------|---------|------|------|
|                  |         |      |      |
| NPV4_03          | 2940    | 2560 | 3260 |
| NPV4_12          | 2870    | 2310 | 2950 |
| NPV4_12tglaceOff | 2940    | 2320 | 2980 |
| Guignard et al.  | 4500    | 3800 | 5900 |

Dans NPV4\_12 diminution de l'epaisseur des nuages. Nuages trop fins

# Rayon des cristaux de glace dans les nuages hauts de glace semi-transparents

| Winter           | Tropics | NH | SH |
|------------------|---------|----|----|
|                  |         |    |    |
| NPV4_03          | 28      | 29 | 28 |
| NPV4_12          | 27      | 29 | 28 |
| NPV4_12tglaceOff | 28      | 29 | 29 |
| Guignard et al.  | 25      | 27 | 23 |

| Summer           | Tropics | NH | SH |
|------------------|---------|----|----|
|                  |         |    |    |
| NPV4_03          | 28      | 31 | 28 |
| NPV4_12          | 28      | 31 | 28 |
| NPV4_12tglaceOff | 28      | 32 | 28 |
| Guignard et al.  | 27      | 27 | 27 |



# Mediane des IWP pour les nuages hauts de glace et semi-transparents

| Winter           | Tropics | NH | SH |
|------------------|---------|----|----|
|                  |         |    |    |
| NPV4_03          | 19      | 26 | 30 |
| NPV4_12          | 19      | 24 | 27 |
| NPV4_12tglaceOff | 19      | 26 | 29 |
| Guignard et al.  | 19      | 25 | 18 |

| Summer           | Tropics | NH | SH |
|------------------|---------|----|----|
|                  |         |    |    |
| NPV4_03          | 18      | 26 | 26 |
| NPV4_12          | 18      | 23 | 24 |
| NPV4_12tglaceOff | 18      | 24 | 26 |
| Guignard et al.  | 20      | 17 | 30 |

Dans NPV4\_12 legere diminution de IWP aux moyennes latitudes





# Tcld high clouds DJF



# Tcld high clouds JJA



Sensitivity to microphysical processes

$$wv_{strato} = (1 - f_{tropo}).wv_{[CH_4]} + f_{tropo}.[wv(T_{TTL}) + wv_{con} + wv_{ov} + wv_{\mu\varphi}]$$

1. Sensitbilite a la temperature du changement de phase glace/eau liquide

- 2. Sensibilite a la sursaturation
- 3. Overshoots

Parameterization of supersaturation in LMDZ

Ice nucleation process can be homogeneous and heterogeneous.

We consider only the homogeneous process.



Rh<sub>crit</sub><sup>\*</sup>(T) as in *Kaercher and Lohmann (2002):* 

- T = 235 K 45% supersaturation
- T = 190 K 67% supersaturation



 $q_{cond} = f.(q_{cloud} - q_{sat})$ 





No supersaturation



The supersaturation scheme only affects ice clouds.



#### Effect of the supersaturation scheme on the cloud cover at 110 hPa



#### Effect of the supersaturation scheme on the vertical profiles of cloud cover





# Effect of the supersaturation scheme on the vertical profiles of relative humidity



# Proportion de nuages hauts

| Winter                | Tropics | NH  | SH  |
|-----------------------|---------|-----|-----|
| No supersaturation NP | 59%     | 43% | 27% |
| Supersaturation NP    | 55%     | 31% | 23% |
| No supersaturation OP | 69%     | 57% | 34% |
| Supersaturation OP    | 65%     | 44% | 28% |
| Guignard et al.       | 62%     | 31% | 14% |

| Summer                | Tropics | NH  | SH  |
|-----------------------|---------|-----|-----|
| No supersaturation NP | 55%     | 44% | 36% |
| Supersaturation NP    | 49%     | 37% | 26% |
| No supersaturation OP | 66%     | 43% | 44% |
| Supersaturation OP    | 59%     | 37% | 35% |
| Guignard et al.       | 58%     | 32% | 28% |

Nouvelle physique et ancienne physique: trop grande proportion de nuages hauts aux moyennes latitudes, corrige par la sursaturation Dans les Tropiques, plus faible proportion de nuages hauts dans la nouvelle physique que dans l'ancienne

#### **Relative High Cloud Amount**



# Nouvelle physique Hiver

#### Relative High Cloud Amount



Nouvelle physique Ete

# Proportion de nuages hauts de glace et semi-transparents

| Winter                | Tropics | NH  | SH |
|-----------------------|---------|-----|----|
| No supersaturation NP | 23%     | 17% | 7% |
| Supersaturation NP    | 18%     | 10% | 2% |
| No supersaturation OP | 24%     | 18% | 8% |
| Supersaturation OP    | 24%     | 10% | 2% |
| Guignard et al.       | 18%     | 15% | 1% |

| Summer                | Tropics | NH  | SH  |
|-----------------------|---------|-----|-----|
| No supersaturation NP | 22%     | 14% | 12% |
| Supersaturation NP    | 17%     | 6%  | 7%  |
| No supersaturation OP | 24%     | 12% | 11% |
| Supersaturation OP    | 24%     | 4%  | 6%  |
| Guignard et al.       | 15%     | 4%  | 12% |

Avec la sursaturation, diminution des nuages hauts de glace ST, en accord avec les donnees AIRS

#### Relative Semi-Transparent High Ice Cloud Amount



#### Relative Semi-Transparent High Ice Cloud Amount



Nouvelle physique Ete





## Cloud emissivities in LMDZ and AIRS data





## Epaisseur des nuages hauts de glace et semi-transparents

| Winter                | Tropics | NH   | SH   |
|-----------------------|---------|------|------|
| No supersaturation NP | 4101    | 3597 | 2776 |
| Supersaturation NP    | 3289    | 2221 | 1869 |
| No supersaturation OP | 3667    | 2558 | 2043 |
| Supersaturation OP    | 2943    | 1896 | 1593 |
| Guignard et al.       | 4900    | 5500 | 5000 |

| Summer                | Tropics | NH   | SH   |
|-----------------------|---------|------|------|
| No supersaturation NP | 4023    | 2527 | 3318 |
| Supersaturation NP    | 3004    | 1776 | 2445 |
| No supersaturation OP | 3488    | 2055 | 2532 |
| Supersaturation OP    | 2678    | 1583 | 2044 |
| Guignard et al.       | 4500    | 3800 | 5900 |

Dans la nouvelle physique, augmentation de l'epaisseur geometrique des nuages en accord avec les observations La sursaturation affine les nuages: pas en accord avec les obs. Sensitivity to microphysical processes

$$wv_{strato} = (1 - f_{tropo}).wv_{[CH_4]} + f_{tropo}.[wv(T_{TTL}) + wv_{con} + wv_{ov} + wv_{\mu\varphi}]$$

1. Sensitbilite a la temperature du changement de phase glace/eau liquide

- 2. Sensibilite a la sursaturation
- 3. Overshoots

Liu and Zipser, JGR, 2005:

Tropical deep convection with overshooting tops is identified by defining 5 different reference heights using a 5-year TRMM database.

Population percentage: 0.54% Mean overshooting distance (km): 1.14 Mean overshooting area (km2): 288 -> diametre de 19 km

Overshooting mainly in the Tropics over continents.

Schema de convection d'Emanuel













GrADS: COLA/IGES

#### Conclusions

- Reasonable tropo-stratospheric transport in LMDZ
- The air parcels penetrate at the bottom of the TTL in regions of deep convection
- Presence of horizontal transport in the LMDZ TTL.
- 0.6 K cold bias of Lagrangian temperature minima, and a 0.2 ppmv dry bias of the amount of water vapour at the entry of the TTL.
- Phase temperature change slightly decreases IWP in midlatitudes, high cloud cover is too large in midlatitudes.
- Supersaturation increases the TTL water vapour of 0.2 ppmv, increases relative humidity of 10 % (consistent with *Tompkins et al. 2007*), reduces cloud fraction in midlatitudes.