The Role of Atmosphere Feedbacks During ENSO in the CMIP3 Models

+ IPSt/03/1M5A!

James Lloyd, Eric Guilyardi, Hilary Weller, Hugo

ENSO in present-day GCMs

 ENSO representation differs from model to model.

 No current model captures all ENSO features (i.e. period, amplitude, spatial structure).

 ENSO is overly weak in IPSL-CM5A

ENSO in GCMs: The Role of the Atmosphere

- Historically, ENSO has been an oceanographer's problem.
- But many recent GCM studies suggest that the atmosphere component plays a dominant role in determining ENSO properties (e.g. 'systematic modular approach': Guilyardi et al., 2004, Schneider et al., 2003)
- Altering the convection scheme has been found to have a large impact on ENSO (Kim et al., 2008, Neale et al., 2008, Wu et al., 2007, Guilyardi et al., 2009).

The µ (Bjerknes) positive feedback

Dynamical coupling between remote winds and SST

Pacific

 $T_x' = \mu SST'$ Calculate by regressing zonal surface wind stress anomaly (τ_x') against Niño 3 SST anomaly (SST') and average over Niño 4

The a negative heat flux feedback

Thermodynamical coupling between net heat flux and

Models and observations

- 12 'Coupled Model Intercomparison Project 3' (CMIP3) models
 - + IPSL-CM5A (standard low resolution, atm: 2°x3.75°, ocean: 2°)

Model	Country
GFDL2.0	USA
GFDL2.1	USA
HadCM3	UK
HadGEM1	UK

Model	Country	
MIMR	Japan	
MIHR	Japan	
CCCMA	Canada	
CNRM	France	

Model	Country
IAP	China
IPSL	France
MPI	Germany
MRI	Japan
+ IPSL-	France
CM5A	

- Look at pre-industrial (at least 100 years) and Atmospheric Model Intercomparison Project (AMIP, 1980-1998) runs.
- Reanalyses/observations used to assess models:

Product	Variables used	Years	Reference
ERA40	All	1958-2001	Uppala et al., 2005
OAFlux	Heat fluxes	1984-2004	Yu and Weller, 2007
NCEP2	Dynamical	1979-2009	Kanamitsu et al., 2002
ISCCP	Clouds/heat fluxes /	1984-2001	Rossow et al., 1996
	CRF	•	

μ and α in the coupled runs

μ in the coupled simulations

- Maximum wind stress response located to west of Niño 3 SST forcing in all models (Gill, 1980).
- CMIP3 models tend to underestimate the remote wind stress response.
- IPSL-CM5A does not improve on this - also has an underestimated µ feedback.

α in the coupled simulations

- Local heat flux feedback is negative in observations and models across most of tropical Pacific.
- CMIP3 models underestimate the heat flux feedback in Niño 3.
- IPSL-CM5A does not improve on this - also has an underestimated α feedback.

μ and α in the coupled

- Models underestimate both μ and α with respect to the observed values => error compensation.
- ENSO is weaker in IPSL-CM5A compared to IPSL-CM4 despite stronger μ and weaker α! Due to changes in oceanic

ENSO amplitude vs. α

Models with stronger heat flux damping (more negative α) tend to exhibit weaker ENSO, and vice versa (corr = 0.61, sig. at 0.05 level).

- Suggests that α is an important contributor to model ENSO amplitude biases.
- On the other hand, no relationship found between μ and ENSO amplitude.
- the "diversity in ENSO stability [amplitude] is attributable to the large model-to-model difference in the sensitivity of the oceanic response to wind forcing and in the atmospheric thermodynamic response to a SST anomaly".

Breaking down the a feedback

- The net α feedback is dominated by the SW and LH components.
- Main cause of α biases is the SW component, α_{SW} (8 models have positive α_{SW}).
- IPSL-CM5A has the strongest positive α_{SW} and one of the weakest α_{LH} feedbacks!

Shortwave flux feedback problems in IPSL-CM5A

How can we understand the source of these errors?

- Diversity of events makes it difficult to compare modelled El Niños to observed events.
- Do biases have their source in the ocean or atmosphere model?
- Use AMIP simulations isolate atmosphere, identical SST forcing.
- Shown here: diagnosing SW flux feedback errors.

α_{SW} in the coupled and AMIP

- The SW flux feedback, α_{SW} , is improved in all AMIP runs compared to the coupled values.
- However, MRI and IPSL-CM5A have a positive α_{SW} feedback in the AMIP runs...errors have their roots in the atmosphere model.

The α_{SW} feedback mechanism

• In observations, two SW flux responses...negative feedback in high cloud, convective regimes (Ramanathan & Collins, 1991), positive feedback in low cloud, subsidence regimes (Klein & Hartmann, 1993, Park & Leovy, 2004).

$$\frac{\partial SW}{\partial SST} = \frac{\partial \omega_{500}}{\partial SST} \times \frac{\partial TCC}{\partial \omega_{500}} \times \frac{\partial SW}{\partial TCC} \approx \alpha_{SW}$$

A simple framework for unravelling

$$\frac{\partial SW}{\partial SST} = \frac{\partial \omega_{500}}{\partial SST} \times \frac{\mathcal{O}SW}{\partial \omega_{500}} \times \frac{\partial SW}{\partial TCC} \approx \alpha_{SW}$$
(1) (2) (3)

Summary and outlook

- As found in the CMIP3 models, the positive Bjerknes (μ) and negative heat flux (α) feedbacks are both underestimated in the standard IPSL-CM5A run (an error compensation).
- The underestimated heat flux feedback in IPSL-CM5A is mainly due to a positive SW flux feedback (α_{SW}). An underestimated LH flux feedback (α_{LH}) also contributes.
- A brief look at the IPSL-CM5A AMIP run shows that the large α_{SW} error has its roots in the atmosphere model.
- A 'feedback decomposition method' for diagnosing the α_{SW} errors is introduced.
- Other diagnostics, not described here, can be used to understand the α_{LH} biases.
- A full investigation of the oceanic feedbacks is also needed to understand the impact of the μ and α biases on the modelled ENSO (e.g. using the BJ index).