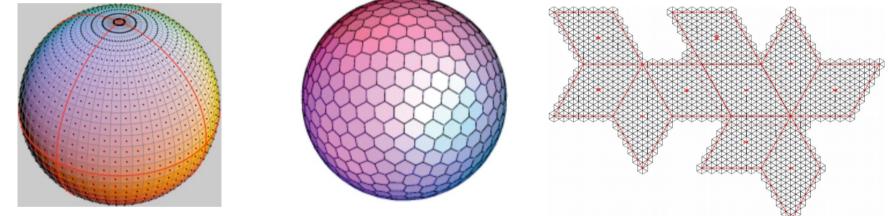
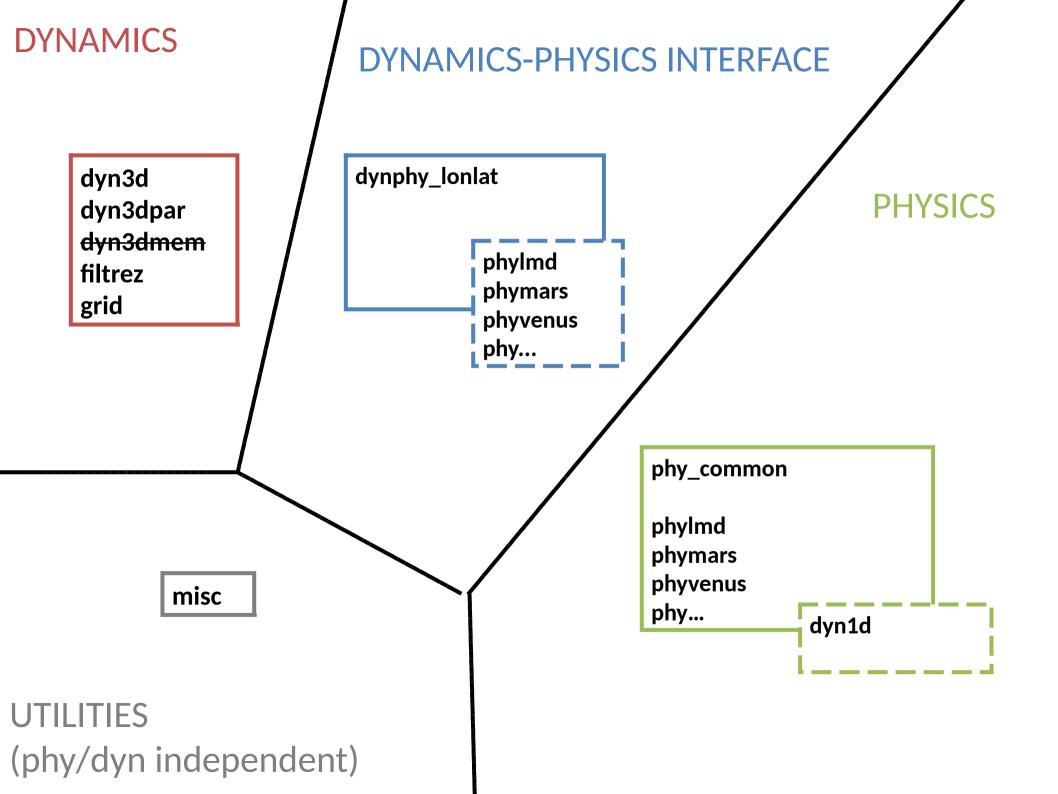
LMDZ - Planets

Some specificities about the planetary atmospheres GCMS


LMDZ courses, December 9, 2021

Overview of available GCMs


- Mars => Derived from LMDZ3
- Venus => Derived from LMDZ4
- Generic => Derived from Mars GCM, for Exoplanets or Gas giants or early Mars, or even Earth
- Titan => First derived from Venus, but now from the Generic GCM
- Pluto/Triton (no really integrated with the rest) => derived from the Generic GCM

Generalized planetary GCMs framework

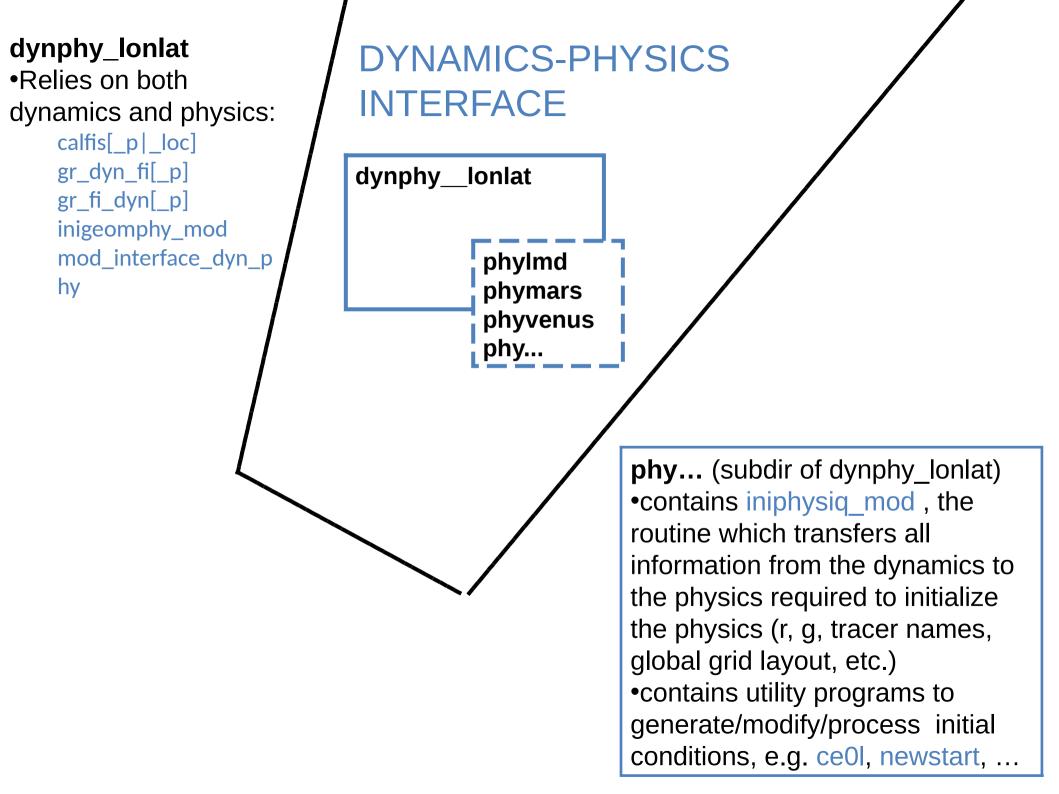
 Share the same dynamics LMDZ.COMMON, and now also DYNAMICO (for Generic, Mars and Venus physics packages) and WRF.

 Importance of a clean physics/dynamics separation to handle switching from a dynamics (LMDZ/DYNAMICO/WRF) or physics package to another => see libf

phy common

•contains routines common to all physics packages phy..., e.g.: mod_phys_Imdz_[mpi|omp]* (MPI/OpenMP organization) ioipsl getin p mod (getin p) abort physic print_control (lunout, prt_level) geometry_mod (lon,lat,cell_area) regular_lon_lat_mod (info on global lon-lat grid for outputs)

mod_grid_phy_Imdz (nbp_lon, nbp_lat, nbp_lev,


klon glo, grid type, nvertex)

dyn1d (subdir of phy...) •contains 1d main program (Imdz1d.F90 or testphys1d.F or rcm1d.F...) and a couple of relevant dynamical routines (links from dyn3d)

•Uses physics routines from ../phy...

phy_common phylmd phymars phyvenus phy dyn1d				
phylmd phymars phyvenus				
phylmd phymars phyvenus	nby common		_	
phymars phyvenus	priy_common	l		
phyvenus				
	phymars			
	phyvenus			
aynia		dyn1d		
	-			

PHYSICS

Planetary GCMs test cases (1)

• Download the install scripts from:

http://www.lmd.jussieu.fr/~lmdz/planets/

- Like install_Imdz.sh, these scripts (install_*.bash) download the required NetCDF library, install it, download the model, compile it (as well as the IOIPSL library), download a testcase and run it.
- Look for the documentation (Mars & Generic GCMs) in LMDZ.*/* (a little bit also can be found in DOC), the trac https://trac.lmd.jussieu.fr/Planeto and also LMDZPedia: https://lmdz-forge.lmd.jussieu.fr/LMDZPedia/Accueil
- Check out the .def (text) input files distributed with the models in the LMDZ.*/deftank directories
- Check out the NetCDF outputs (diagfi.nc, stats.nc, ...)

Planetary GCMs test cases (2)

- Redo some extended simulations (change *nday* in run.def) and select outputs in diagfi.nc using a diagfi.def file (for Mars/Generic/Titan). Also check out the stats.nc output.
- Adapt the arch files to compile in MPI (see the LMDZ model tutorial, very straightforward to adapt to planetary GCMs) and learn to run using "mpirun"
- We are (slowly) moving on to XIOS for outputs; you might want to check out how to use it (mandatory with DYNAMICO!).
- Play with start2archive and newstart to change resolution (but it is easier to ask around for adequate initial conditions and def files).
- Also check out post-processing tools provided in LMDZ.***/... of the models.
- If interested: Try to use the 1D version of the models.

Mixed bag of comments & advice

- The scripts we provide are (mostly) for illustrative examples. You will most likely need to develop your own (no need to re-install the NetCDF, IOIPSL or XIOS library every time) and adapt to your machine's settings (e.g. write your own "arch" files to use "module load ..." and/or an existing installed MPI distribution... and/or...)
- Remember the "svn" (subversion) is your friend! Use it to regularly check for updates and check what you changed (if anything) with respect to the reference code.