
  

LMDZ

Dynamics/physics organization,
Grids,

Time stepping,
Dissipation...

LMDZ courses, December 17 2020



  

Overview of course topics
● Grids:

– Horizontal grids in the physics & dynamics
– Vertical discretization

● Time marching:
– Generalities about time marching schemes
– What is used in LMDZ
– Longitudinal polar filter

● Lateral diffusion and sponge layer:
– Energy cascade
– Illustrative example of diffusion
– Sponge layer near model top



  

Grids in LMDZ

Separation between physics and dynamics:

● “dynamics”: solving the GFD equations on the sphere; usually with the assumption of 
a hydrostatic balance and thin layer approximation. Valid for all terrestrial planets.

● “physics”: (planet-specific) local processes, local to individual atmospheric columns. 



  

Horizontal grids in LMDZ

Grid dimensions specified 
when compiling LMDZ:

makelmdz[_fcm] -d iimxjjmxllm ...

In the dynamics:
● Staggered grids, u, v and 

scalars (temperature, tracers) 
are on different meshes

● Global lonxlat grids with 
redundant grid points
- at the poles
- in longitude

In the physics:
● Collocated variables 
● No global lonxlat horizontal 

grid, columns are labelled 
using a single index (from 
North Pole to South Pole)



  

LMDZ, Z for Zoom

Zoom centred on coordinates :
clon : longitude (degrees)
clat : latitude (degrees)

grossimx/grossimy : zoom factor along
 x/y directions (i.e. lon/lat)
Computed as the ratio of the smallest mesh (I.e. in the zoom), compared to the mesh 
size for a global regular grid with the same total number of points.

dzoomx/dzoomy : fraction of the grid containing the zoomed area: dzoom*360° by
dzoomy*180°



  

LMDZ, Z for Zoom

Zoom centred on coordinates :
clon : longitude (degrees)
clat : latitude (degrees)

grossimx/grossimy : zoom factor along
 x/y directions (i.e. lon/lat)
Computed as the ratio of the smallest mesh (I.e. in the zoom), compared to the mesh 
size for a global regular grid with the same total number of points.

taux/tauy : steepness of the transition between inner zoom and outer zoom meshes 
(typically one tries to avoid sharp transitions; tau ~ 3 is a reasonable value)



  

Nudging in LMDZ

Strong nudging
(t=30min)

Weak to 
moderate
nudging
(t=10 days)

          Nudging towards 
analyses or reanalyses with 
given time constants

∂u
∂ t

=
∂u
∂ t GCM

+
uanalyse−u

t

∂v
∂ t

=
∂v
∂ t GCM

+
vanalyse−v

t

uanalyse vanalyse

Example of nudging parameters:

ok_guide = y
guide_T = n , guide_p = n , guide_q = n
guide_u = y , guide_v = y
tau_min_u = 0.0208333 (days)
tau_max_u = 10 (days)
tau_min_v = 0.0208333 (days)
tau_max_v = 10 (days)



  

● Model levels are hybrid sigma-pressure levels:

P(level,time) = ap(level) + bp(level) . Ps (time)

hybrid coordinates ap(k) and bp(k) are fixed for a given model run

Surface pressure Ps(t) varies during the run

● Near the surface ap ~ 0

=> bp(k) ~ P/Ps

● At high altitudes , bp ~ 0

=> ap(k) ~ P

Vertical discretization in LMDZ



  

Vertical discretization in LMDZ
● Setting model levels via the def files (also a function of number of vertical levels) :

vert_sampling = strato_custom : customable (via other parameters in .def file; 
see next slide) discretization for stratospheric extensions.

Multiple other possibilities from this “default”: 

vert_sampling = strato : a default for stratospheric extensions

vert_sampling = sigma : automated generation of purely sigma levels

vert_sampling = param : load values from a “sigma.def” file 

vert_sampling = tropo : a default  for tropospheric simulations

vert_sampling = read : read ap() and bp() from file “hybrid.txt”

=> Typically you don't need to mess with the vertical discretization,

the default behaviour most likely matches your needs.

=> Check out routine dyn3d_common/disvert.F90



  

Vertical discretization in LMDZ
● Example of  typical altitudes of L19/L39/L79 vertical layer position and thickness

“Standard” L79 settings

vert_sampling=strato_custom

vert_scale=7.
vert_dzmin=0.017
vert_dzlow=1.
vert_z0low=8.7
vert_dzmid=2.
vert_z0mid=70.
vert_h_mid=20.
vert_dzhig=11.
vert_z0hig=75.
vert_h_hig=20.



Questions ?



  

● The big picture: you want to solve 

● And it is all about using a time marching 
scheme, built on Taylor expansion for 
evaluation of the time derivative, and choosing 
at which time level t=n.dt the right hand side 
term R[f(t),t] is to be evaluated

Time marching schemes



  

● Explicit Euler scheme (1st order in time): 

● Implicit Euler scheme (1st order in time):

● Crank-Nicholson scheme (2nd order in time):

Time marching schemes



  

● Matsuno scheme: a predictor-corrector (Euler 
explicit-Euler Implicit) scheme (1st order):

● Leapfrog scheme: use encompassing time 
steps to evaluate the derivative (2nd order):

Time marching schemes



  

● Illustrative example, on a decay equation 

● Building Euler explicit (E) & implicit (I) schemes:

Time marching schemes

(E.E.) (E.I.)



  

● Illustrative example, on a decay equation 

● Resulting integration schemes:

● Stability requirement (CFL) for EE : dt/tau < 2

Time marching schemes



  

Time marching schemes

● 4 integration steps per unit of t/tau



  

Time marching schemes

● 8 integration steps per unit of t/tau



  

Time marching schemes

● 8 integration steps per unit of t/tau



  

Time splitting between physics/dynamics/dissipation:

Time marching in LMDZ

● Dynamics : Leapfrog-Matsuno scheme

    Using day_step dynamical steps per day

Leapfrog steps with a Mastuno step every iperiod step
● Physics : Explicit Euler

Every iphysiq dynamical steps (multiple of iperiod)
● Dissipation: Explicit Euler

Every dissip_period dynamical steps (multiple of iperiod)



  

Even when solving linear spatio-temporal boundary-value 
problems, e.g.:

Side note about explicit or 
implicit time marching schemes

The explicit Euler approach leads to a straightforward expression 
for grid point values (but with stability constraints) :

Whereas the implicit Euler approach leads to a 
(tridiagonal) system of equations to solve:

=> requires more computations, but may be necessary if 
time-stepping constrains require using large time steps.



  

When needing to solve a tridiagonal system of the form:

T.x=y , T tridiagonal matrix, x & y vectors

Rather than invert T (costly!) to generate T-1 (dense matrix) 
and compute x=T-1.y (matrix-vector product)

Use the LU decomposition (Gaussian elimination) of T to split 
the problem into two very simple sub-problems:

1) L.U=T , L and U are bidiagonal (lower/upper) matrices

2) Solve L.z=y for vector z (forward substitution step)

3) Solve U.x=z for vector x (backward substitution step)

Side note about tridiagonal 
system solving



● CFL requirement, for an advection velocity Umax :
Umax.(dt/dx) = cte , with cte ~ 0(1)

Scheme I by Van Leer (1977)

x

c

ρvcδt

Centered finite differences (second order)

x

c

ρvc

ii-1 i+1
Upwind first order scheme (Godunov, 1952)

x

c

ρvcδt

ii-1 i+1

ii-1 i+1

Use of the Van Leer I scheme 
(1977), a second order finite volume 
scheme with slope limiters (e.g. 
MUSCL, MINMOD)  (Hourdin et 
Armengaud, 1999).

Guaranties of fundamental physical 
properties of transport :
conservation of the total quantity, 
postitivity, monotony, non 
amplification of extrema, weak 
numerical diffusion

Tracer advection in LMDZ



Tracer advection in LMDZ

● In practice: Tracer names and advection schemes are set 
in the traceur.def file. e.g.:
5 <- Total number of tracers
14 14 H2Ov <- Tracer advection scheme and name
10 10 H2Ol <- Tracer advection scheme and name
10 10 H2Oi <- ...
10 10 RN
10 10 PB

● Scheme “10” : Van Leer scheme
● Scheme “14” : Specific modified scheme for water vapor
● Other (experimental) schemes are coded; see 

dyn3d/advtrac.F90



Questions ?



  

Longitudinal polar filter

● A lon-lat grid implies that 
the meshes tighten 
dramatically as the pole is 
approached.

● CFL conditions there would 
dictate using an extremely 
small time step for the time 
marching scheme.

● Longitudinal (Fourier) filtering, removing high 
spatial frequencies, is used to enforce that 
resolved features are at the level of those at ~60° 



  

 Energy spectra and 
lateral dissipation

● In order to fulfil the observed energy cascade from resolved 
scales to unresolved scales in GCMs, a dissipation term is 
added:

● Observations (Nastrom & Gage 
1985, Lindborg 1999) collected over 
length scales from a few to 
thousands of km display a 
characteristic energy cascade (from 
Skamarock, 2004).



  

Lateral dissipation in GCMs 
as a tool to pin the energy 
cascade

From Numerical Techniques for
Global Atmospheric Models, Lauritzen 
et al. (eds), 2010



  

Illustrative example of dissipation

● Simple 1D diffusion equation toy model:

● Von Neumann (Fourier mode) analysis

● Explicit Euler time marching (with stability condition!):

Note that mode damping is stronger for large k



  

Illustrative example of dissipation

● Temporal evolution, from an initial condition 
consisting of 2 sine modes and an extreme (2 
grid points wavelength) “numerical mode”



  

Controlling dissipation in LMDZ
● Parameters in file gcm.def:

dissip_period: Apply dissipation every dissip_period dynamical steps 
(or specify 0 to let model pick an appropriate value)

nitergdiv: number of iterations on velocity dissipation operator grad.div

nitergrot: number of iterations on velocity dissipation operator grad.rot

niterh: number of iterations on temperature dissipation operator 
div.grad

Usual values: nitergdiv=1, nitergrot=2, niterh=2

tetagdiv: dissipation time scale (s) for smallest wavelength for u,v 
(grad.div component)

tetagrot: dissipation time scale (s) for smallest wavelength for u,v 
(grad.rot component)

tetatemp: dissipation time scale (s) for smallest wavelength for 
potential temperature (div.grad)

values depend on horizontal resolution



  

Controlling dissipation in LMDZ
● Parameters in file gcm.def:

tetagdiv: dissipation time scale (s) for smallest 
wavelength for u,v (grad.div component)

tetagrot: dissipation time scale (s) for smallest 
wavelength for u,v (grad.rot component)

tetatemp: dissipation time scale (s) for smallest 
wavelength for potential temperature (div.grad)

optimal teta values depend on horizontal resolution
● Moreover there is a multiplicative factor for the 

dissipation coefficient, which increases with model 
levels (see dyn3d_common/inidissip.F90), which can 
be controlled by flag “vert_prof_dissip”



  

● In addition to lateral dissipation, it is necessary to damp 
vertically propagating waves (non-physically reflected 
downward from model top).

● The sponge layer is limited to topmost layers (usually 4) 
and added during the dissipation step.

● Sponge modes and parameters (gcm.def):

iflag_top_bound: 0 for no sponge, 1 for sponge over 4 
topmost layers, 2 for sponge from top to 100 times topmost 
layer pressure

mode_top_bound: 0 for no relaxation, 1 to relax u,v to 
zero, 2 to relax u,v to their zonal mean, 3 to relax u,v and 
potential temperature to their zonal mean.

tau_top_bound: inverse of characteristic time scale at the 
topmost layer (halved at each successive descending layer)

The sponge layer



  

Some examples of typical values for various resolutions 

From test simulations using various horizontal resolutions (Foujols et al.)
http://forge.ipsl.jussieu.fr/igcmg/wiki/ResolutionIPSLCM4_v2



  

Rules of thumb for run.def parameters
● Time steps in LMDZ:

dynamical time steps: dtvr = daysec / day_step

physics time step: dtphys = iphysiq * dtvr

dissipation time step: dtdiss = dissip_period * dtvr

tracer advection time step: dtvrtrac = iapp_trac * dtvr

●  Constraints to be aware of:

dtvr limited by CFL for waves: Cmax.dt < min(dx,dy)

dtrtrac limited by advection CFL: Umax.dt < min(dx,dy)

iphysiq, dtvrtrac, dissip_period should be multiples of 
iperiod



  

● Constraints to be aware of (continued):

dissipation time step should be much smaller than dissipation 
timescales:

dtdiss << tetatgdiv, tetagrot, tetatemp

● Changing time step with resolution on a regular grid:

day_step(max(iim,jjm)=N) ~ day_step(max(iim,jjm)=M) * M/N

● Time step for a zoomed simulation, compared to regular grid:

day_step(zoom) ~ day_step(regular)*max(grossismx,grossismy)

Rules of thumb for run.def parameters


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36

