
Tutorial: Compiling and running LMD in parallel

The LMDZ team

December 1, 2016

This tutorial focuses on setting up, compiling and running LMDZ on a parallel computer.

This document can be downloaded as a pdf file:

wget http://www.lmd.jussieu.fr/~lmdz/Distrib/TD_para.pdf

which should ease any copy/paste of command lines to issue.

This tutorial is for users who want to learn the basic steps needed to be able to run parallel
versions of LMDZ on their computer. Note that this implies the prerequisite that there is a work-
ing MPI library already installed on the machine, which is the case for the laptops provided for
this training session (on which the OpenMPI library is installed).

Throughout this tutorial we will assume that you are working on the provided laptops, for
which an MPI library and utilities (using the gfortran compiler) are installed in the following
directories1:

/usr/lib/openmpi /usr/bin /usr/lib

Depending on your environment variables and settings2, it is recommended (often mandatory!) to
set available stacksize (which is roughly the amount of memory your program is allowed to request
from the system) to maximum and add the MPI library path to LD LIBRARY PATH (this
variable tells programs where to look for needed dynamical libraries at run time):

ulimit -s unlimited
export LD_LIBRARY_PATH=/where/your/mpi/lib/is/lib:$LD_LIBRARY_PATH

Note that for the provided laptops there is no need to modify LD LIBRARY PATH since
the library is in a common standard location.

1 Running the install lmdz.sh script

The install lmdz.sh script can do the necessary to install the model; all that is required is to
use the -parallel option, which may be set to none (default) or mpi omp to compile and run
an hybrid (mixed MPI and Openmp) parallel version of LMDZ.

Create a separate directory to install the model (assuming you want to keep previous work
done with the serial version) and run3:

1If running on your own machines, you will of course have to adapt MPI paths to point to the appropriate
location. There are various available MPI libraries downloadable from the Internet, such as OpenMPI or MPICH.
What is important to know is that the MPI library must have been compiled with the same compiler than the one
used to compile LMDZ.

2Ideally setting stacksize and LD LIBRARY PATH should be set in your /̃.bashrc to avoid having issue these
commands in each terminal and in every session.

3An alternative to working in a different directory than previously would be to use the -name option of mpi omp
to download, install and run in a different target directory than the default LMDZtesting

1

wget http://www.lmd.jussieu.fr/~lmdz/Distrib/install_lmdz.sh
chmod +x install_lmdz.sh
./install_lmdz.sh -parallel mpi_omp -d 48x36x39

Just as in the first tutorial, the script will end after a short run of the 48×36-L39 test case.
You should check that you obtained the same output (restart.nc, histday.nc, etc.) as with the
original serial install.

2 About the arch files

In order to enable MPI and OpenMP, one has to set the corresponding options in arch files prior
to compilation. In practice, this means one must create (the install lmdz.sh script takes care of
it) an arch-local.fcm files (in the arch sudirectory of the LMDZ5 directory).
This arch-local.fcm should be something like4:

%COMPILER mpif90
%LINK mpif90
%AR ar
%MAKE make
%FPP_FLAGS -P -traditional
%FPP_DEF NC_DOUBLE
%BASE_FFLAGS -cpp -ffree-line-length-0 -fdefault-real-8 -DNC_DOUBLE
%PROD_FFLAGS -O3
%DEV_FFLAGS -Wall -fbounds-check
%DEBUG_FFLAGS -g3 -Wall -fbounds-check -ffpe-trap=invalid,zero,overflow -O0
%MPI_FFLAGS -fcray-pointer
%OMP_FFLAGS -fopenmp -fcray-pointer
%BASE_LD
%MPI_LD
%OMP_LD -fopenmp

Where additions concern the MPI FFLAGS and MPI LD lines for MPI, and the OMP FFLAGS
and OMP LD lines for OpenMP.

Having correctly set an arch file, one can then compile and run in the various parallel modes,
or even just in serial. In practice, it is convenient to put these instructions in scripts (see for
instance the compile.sh in the LMDZ5 directory and the bench.sh and run local.sh scripts
in the BENCH46x36x39), but in what follows the minimal necessary sequence of commands are
given and explained one at a time.

3 Compiling and running LMDZ in MPI

From the LMDZ5 directory, compile the model in MPI mode:

./makelmdz_fcm -arch para -mem -parallel mpi -d 48x36x39 -j 8 gcm

The executable, gcm 48x36x39 para mem.e, is generated in the bin subdirectory.

Once the model has been successfully recompiled, run a simulation. To do so, create a new sub-
directory, e.g. BENCH48x36x39 mpi, in LMDZ5 and copy boundary conditions, initial con-
ditions and parameter files (limit.nc, star*nc, *.def) over from directory BENCH48x36x39,

4Check out the files in the arch directory for examples relative to other compilers; e.g. ifort in the Ada arch
files.

2

along with the newly created excutable.

To run, you will need to use the mpirun utility (from the MPI library) and specify the number
of processes to run on (using the -np option), e.g. 4:

mpirun -np 4 gcm_48x36x39_phylmd_para_mem.e > listing 2>&1

The run should be much shorter than the equivalent serial run (verify this!).

When running in parallel, each MPI process creates its own hist* files. You will thus obtain
for instance a files histday.0001.nc, histday.0001.nc, histday.0002.nc and histday.0003.nc which
contains data relative to the sets of atmospheric columns managed by each process. To combine
the output files from different processes into a single file containing the full dataset, use the IOIPSL
rebuild script. The rebuild script is generated when installing IOIPSL When installing IOIPSL,
a modipsl directory was created and the rebuild script installed in modipsl/bin5.
For each type of file, histday, histmth, etc., simply issue a command of the likes of:

rebuild -o histday.nc histday.000*

to generate the recombined output file.

You can check that the output files thus generated are identical to the ones generated by the
BENCH48x36x39 run. Likewise for the restart.nc and restartfi.nc files. Note also that the
listing file for the MPI run is larger than in a serial case, as most output messages are redundantly
written by all processes.

4 Compiling and running LMDZ in OpenMP

Compile LMDZ in OpenMP mode:

./makelmdz_fcm -arch para -mem -parallel omp -d 48x36x39 -j 8 gcm

The executable, gcm 48x36x39 para mem.e, is generated in the bin subdirectory.

Once the model has been successfully recompiled, run a new simulation in a new subdirec-
tory of LMDZ5, e.g. BENCH48x36x39 omp and copy over boundary conditions etc. from
BENCH48x36x39, along with the newly created excutable.

Before launching the run, some OpenMP environment variables must be set to specify the
(maximum) amount of memory privately allocated to each thread, and the number of OpenMP
threads to run with, e.g. 4:

export OMP_STACKSIZE=200M
export OMP_NUM_THREADS=4
./gcm_48x36x39_phylmd_para_mem.e > listing 2>&1

Note that this time the generated hist*nc files are unique, but suffixed 0000.nc. Again you can
check that the model outputs are the same than those obtained in serial and pure MPI runs.

5Adding this directory to your PATH, e.g. in your ~/.bashrc to avoid having to type the full path each time
you want to use rebuild is advised

3

5 Compiling and running LMDZ in mixed MPI/OpenMP

Compile LMDZ in mixed MPI/OpenMP mode:

./makelmdz_fcm -arch local -mem -parallel mpi_omp -d 48x36x39 -j 8 gcm

Again, create a subdirectory in which to run the model. All that was mentionned in the
previous sections on pure MPI and OpenMP runs combine when using the mixed mode. So
assuming you want to run using 3 MPI processes, each using 2 OpenMP threads6:

export OMP_STACKSIZE=200M
export OMP_NUM_THREADS=2
mpirun -np 3 gcm_48x36x39_phylmd_para_mem.e > listing 2>&1

Since you have used 3 MPI processes, output hist files will be split in 3 (i.e. histday 0000.nc,
histday 0001.nc and histday 0002.nc) and should be recombined using the rebuild tool. Once
again, results should match those obtained with the serial, pure MPI, and pure OpenMP runs.

6 Adjusting and setting the workload between MPI tasks

In the directories where you did your MPI (or mixed MPI/OpenMP) run, you’ll find a bands
file, e.g. Bands 48x36x39 4prc.dat, which contains information on how many columns where
handled by each MPI process7.

The default behaviour, for LMDZ, is to load and follow the instructions of the bands file present
in the directory where it runs. If it cannot find such a file, it then automaticaly generates one
(which was the case in the test runs you’ve done so far) which simply considers splitting evenly
the work between all available tasks. But this is rarely optimal.

There is an automated way of (iteratively) adjusting the workshare in LMDZ which can be
triggered by setting the adjust parameter in file run.def to y.
Important: The adjust option should only be used in pure MPI mode, and is intended to be
used to tune the bands file, and not to be used for production runs. Once a suitable bands file is
obtained (which typically requires a month, i.e. 30 days long run), one should revert the adjust
option to n and run with the resulting bands file.

Set up you experiment in a new directory. Import files (and MPI executable) there and set
adjust=y in the run.def file, as well as nday=30. Run using 4 processes:

mpirun -np 4 gcm_48x36x39_phylmd_para_mem.e > listing 2>&1

Check out the produced Bands 48x36x39 4prc.dat file and compare to the more näıve one that
was previously generated.
To evaluate if this bands file is ”converged”, copy it aside for future reference and re-run LMDZ.

6Note that you can request using more cores than available on a given machine. This is of course extremely
inefficient and one should strive to use at most the total number of available cores.

7The bands file contains information on how many columns are handled by each MPI process, but also for each
of the four main ”code steps”: dynamics, tracer advection, dissipation, and physics. A bands file for N processes
thus contains 4N lines. Each line contains two elements: the process number and number of atmospheric columns
assigned to it.

4

