
Parallelism in LMDZ

A short survival guide for those who
feel diagonally stuck in a parallel world

LMDZ course, December 06th 2016

LMDZ5 DOCUMENTATION:
http://lmdz.lmd.jussieu.fr/utilisateurs/manuel-de-reference-1/lmdz5-documentation/view

2

What's parallelism ?

● As simple as `union makes the force': A clever way to divide a task in multiple small
ones and deliver them to a same amount of `workers'
● e.g.: We want to translate the book 'Les Misérables', (V. Hugo, 1862, 5 cap. More
than 1500 pages)

1. Assume we are all proficency in French
2. We divide the book on equal number of pages
3. Each one will translate only that given number of pages
4. Translation finished once all of us will be finished, but my translation does not

depend on any one, is `independent' from the others
5. But will be some organizer that will be waiting to all of us to bring the translation

to the editorial

● Computer parallelism mimics this approximation
● Making use of different cores, mainly with two paradigms: distributed memory and
shared memory
● Technically, data to compute is divided in different parts and send to different cores
which will work on each chunk. Usually a parent core will controle all the process
sending/recieving/coordinating all the data

3

Why go parallel ?

● To have simulations run faster by using multiple cores to share the
workload, each working “as independently as possible” (i.e.: with the
minimum communication/interaction with the other cores).

● To benefit from modern architectures (from laptops to supercomputers).

Which parallelism is implemented in LMDZ ?
● LMDZ is designed so that it can be compiled and run in serial (sequential)
or parallel mode (in various forms, MPI, OpenMP, or mixed MPI/OpenMP, as
will be discussed later).

● The implementation of the parallel modes has been thought of, and done
(Yann Meurdesoif, LSCE, IPSL), so that it can easily benefit from all
hardware platforms. The various aspects of parallelism in the code have
moreover been coded as to be the least intrusive for users and developers.

4

Cluster: union makes the force !

A cluster is a series of computers connected among them which share work

Node: basic unit

A node is the basic unit of computation: cpu, memory

Example of a node with two cpus each of one
with 4 cores

5

Cluster: union makes the force !

A cluster is a series of computers connected among them which share work

Switch: connectivity

Nodes are connected via a switch which transfers information between
nodes

Example of a switch with connections for 16
nodes.

Each node is identified within the cluster.

One has to be able to send specific information
to each one

6

Cluster: union makes the force !

Cluster is a series of nodes interconnected via the switch

Example of a cluster of 16 nodes with 128
cpus

There are other configurations: vectorial
(Cray), but currently massive parallel
cluster (>> 10k of cpus) is the most
common

Current first super-computer (Nov 2016,
Top500):
Sunway TaihuLight (China): 93 petaflops,
10,649,600 cores

First French (16th): Pangea (TOTAL),
220,800 cores

 Météo France (50,51), Occigen (64),
Curie (74)

7

Cluster: union makes the force !

Although a cluster of parallel cpus might be quite powerful, it has some
limitations:

● Code has to be prepared to be able to split work in parallel tasks;
Message passing Interface (MPI, usually within nodes), sharing memory
openMP (usually within cores inside the node)
● Switch: bottle neck; more transmission, less efficency
● Code has to `scale': more cpus --> fuster. But usually performance decay
● Clusters require premanent cooling systems (more than 1M€/y)
● Clusters require permanent maintenance staff
● Cluster might be able to produce huge amounts of data (CMIP5, June
2013, in iCAS2013, 1.8 PB for 59000 data sets stored in 4.3 Mio Files in 23
ESGF, source: DKRZ)

8

MPI and OpenMP parallelism paradigms

MPI : Distributed Memory parallelism

● The code to be executed is replicated on all CPUs in as many processes.

● Each process runs independently and by default does not have access to the other
precesses' memory.

● Data is shared via a message passing interface library (OpenMPI, MPICH, etc.) which
uses the interconnection network of the machine. Efficiency then essentially relies on the
quality of the interconnection network. As a new set of subroutines and functions: CALL
bcast, CALL gather, CALL scatter, ...

● The number of processes to use is given at runtime: mpirun -n 8 gcm.e

OpenMP : Shared memory parallelism

● This parallelism is based on the principle of multithreading. Multiple tasks (threads) run
concurrently within a process.

● Each task essentially has (shared) access to the global memory of the process.

● Loops are parallelized using directives (!$OMP ... , which are included in the source code
where they appear as comments) interpreted by the compiler.

● The number of OpenMP threads to used is set via an environment variable
OMP_NUM_THREADS (e.g.: OMP_NUM_THREADS=4)

9

Hybrid MPI/OpenMP
programming

➢ Each MPI process launches OpenMP threads which have access to its
global memory. (threads also have private memory for specific variables)

➢ In LMDZ, MPI and OpenMP are differently implemented to best fit
requirements. The number of OpenMP threads per MPI process is fixed
and remains the same throughout a simulation.

10

Hybrid MPI/OpenMP
programming

Different parallization approaches in the dynamics and physics
➢ In the dynamics

Short time steps; many interactions between neighbouring meshes,
and therefore numerous cases of data exchange and synchronizations.
The subtler part of the parallelism in the code..

➢ In the physics
longer time steps; no interaction between neighbouring columns of the
atmosphere.

11

Parallelism in the dynamics

=> MPI tiling
● Tiling is by bands of latitude.
● A minimum of 3 latitude bands per MPI process is mandatory.
● But the work load is not the same for all latitudes (essentially because of the polar filter).
● Use option adjust=y (in gcm.def) to dynamically optimize (during the run) the band

distribution of processes.
➔ Run the GCM (in MPI mode only!) over at least a few thousand time steps to obtain a

Bands_**x**x**_*prc.dat file.
➔ Re-run the simulation using option adjust=n (with the Bands_* file in the run directory)

NB: if there is no Bands_* file, the GCM creates one with a uniform balance between processes

vertical
levels

12

Parallelism in the dynamics

=> OpenMP split
● The split is done along the vertical levels only (the outermost loop in most

computations).
● An indicate size of blocs to assign to each thread can be specified using option

omp_chunck=... in gcm.def.
● In practice, target chunks of 4 or 5 vertical levels for each OpenMP task (an optimal

compromise, but which may depend on the machine on which the code is run).

13

Parallelism in the physics

● The physics handles physical
phenomena which interact within a
single atmospheric column:
radiation, convection boundary
layer, etc.

● Individual columns of atmosphere
do not interact with one another.

● The paralellization strategy is to
distribute the colums of
atmosphere over all cores.

● The physics grid : klon_glo
geographic points over klev
vertical levels.
First node (1) => North pole,
last node (klon_glo) => South pole.

14

Parallelism in the physics

● The columns from the global domain are first distributed among the MPI processes.
● The global domain : klon_glo columns of atmosphere

● The columns of each MPI domain are assigned to the OpenMP tasks assigned to the
that process :

● In each MPI domain : klon_mpi columns : Σ klon_mpi = klon_glo
● In each OpenMP domain : klon_omp columns : Σ klon_omp = klon_mpi

● In practice, the size of the local domain klon is an alias of klon_omp (so as to behave
exactly as when running the serial code).
➔ Never forget that klon varies from one core to another.

15

Now time to practice a little....

16

Some LMDZ code linked to parallelism

Different parallelism control parameters:
● klon_glo, nbp_lon, nbp_lat, nbp_lev
● klon_mpi , klon_mpi_begin, klon_mpi_end, ii_begin, ii_end, jj_begin, jj_end, jj_nb,

is_north_pole_[phy/dyn], is_south_pole_[phy/dyn], is_mpi_root, mpi_rank, mpi_size
● klon_omp, klon_omp_begin, klon_omp_end, is_omp_root, omp_size, omp_rank

Some general considerations in physics:
● For openMP, delacre all SAVE variables as:

REAL, SAVE :: save_var
!$OMP THREADPRIVATE(save_var)

● Allocation of variables with `klon' (real size within each core)
ALLOCATE (myvar(klon))

● Neither North or Pole grid points are:
 myvar(1) or myvar(klon)

Data transferts:
● The transfer interfaces handle data of all the basic types : REAL,

INTEGER, LOGICAL, CHARACTER(only for broadcast)
● The transfer interfaces moreover can handle fields of 1 to 4 dimensions

17

Data transfer in the physics (examples)

Broadcast : the master process duplicates its data to all processes and tasks.
Independently of the variable's dimensions

CALL bcast(var)

Scatter : the master task has a field on the global grid (klon_glo) which is to be scattered to
the local grids (klon).

The first dimension of the global field must be klon_glo, and the one of the local field
must be klon

CALL scatter(field_glo,field_loc)

Gather : a field defined on the local grids (klon) is gathered on the global grid of the master
process (klon_glo).

The first dimension of the global field must be klon_glo, and the one of the local field
must be klon

CALL gather(field_loc,field_glo)

Figures from: http://mpitutorial.com/mpi-scatter-gather-and-allgather/

18

Scatter2D : same as Scatter exept that the global field is defined on a 2D grid of : nbp_lon x
nbp_lat.

The first and second dimensions of the global field must be (nbp_lon,nbp_lat), and the first
dimension of the local field must be klon

CALL scatter2D(field2D_glo,field1D_loc)

Gather2D : gather data on the 2D grid of the master process.

CALL gather2D(Field1D_loc,Field2D_glo)

19

Illustrative example of load data from a file, (simplified) extracted from
phylmd/read_map2D.F90

USE dimphy
USE netcdf
USE mod_grid_phy_lmdz
USE mod_phys_lmdz_para
...

REAL, DIMENSION(nbp_lon,nbp_lat) :: var_glo2D
REAL, DIMENSION(klon_glo) :: var_glo1D
REAL, DIMENSION(klon) :: varout

! Read variable from file. Done by master process MPI and master thread OpenMP
 IF (is_mpi_root .AND. is_omp_root) THEN
 NF90_OPEN(filename, NF90_NOWRITE, nid)
 NF90_INQ_VARID(nid, varname, nvarid)

 start=(/1,1,timestep/)
 count=(/nbp_lon,nbp_lat,1/)
 NF90_GET_VAR(nid, nvarid, var_glo2D,start,count)
 NF90_CLOSE(nid)

 ! Transform the global field from 2D to 1D
 CALL grid2Dto1D_glo(var_glo2D,var_glo1D)
 ENDIF

! Scatter global 1D variable to all processes
 CALL scatter(var_glo1D, varout)

PERIODIC FORMATION at `Maison de la simualtion'

20

Writing output IOIPSL files and rebuilding the results

➢ Each MPI process writes data for its domain in a distinct file. One thus
obtains as many files histmth_00XX.nc files as processes were used for the
simulation.

➢ The domain concerned by a given IOIPSL file is defined with a call to
histbeg, which is encapsulated in histbeg_phy (module iophy.F).

➢ Data is gathered on the master (rank 0) OpenMP task for each process.
Each MPI process then calls the IOIPSL routine histwrite, which is
encapsulated in histwrite_phy (module iophy.F).

➢ Warning: what is mentioned above is only true for outputs in the physicsoutputs in the physics;
it is also possible to make some outputs in the dynamics (triggered via
ok_dyn_ins and ok_dyn_ave in run.def), but for these, data is moreover
gathered on the master process so that there is only one file on output (which so that there is only one file on output (which
is a major bottleneck, performance-wise) => should only be used for is a major bottleneck, performance-wise) => should only be used for
debugging.debugging.

21

Writing output IOIPSL files and rebuilding the results

Once the simulation finished, one must gather the data in a single file.
This requires using the rebuild utility:

rebuild -o histmth.nc histmth_00*.nc

➢ rebuild is a utility distributed with IOIPSL
 See « How to install IOIPSL and the rebuild utility» in the LMDZ website FAQ

(http://lmdz.lmd.jussieu.fr/utilisateurs/faq-en)

➢ In the IDRIS and CCRT supercomputing centres, rebuild is available to all,
along with other common tools :

IDRIS
Ada/Adapp : /smphome/rech/psl/rpsl035/bin/rebuild

CCRT
Curie : /home/cont003/p86ipsl/X64/bin/rebuild

22

The XIOS library (there is a Tutorial)

● Next generation of the output library (IOIPSL not upgraded any more, will
become depreciated).

https://forge.ipsl.jussieu.fr/ioserver

● Having installed the XIOS library (reference versions on global IPSL account
on Ada and Curie), compile LMDZ using the “-io xios” option:

makelmdz_fcm -mem -parallel [mpi|omp|mpi_omp] -io xios

● Output is managed via `xml' files
● Set flag “ok_all_xml=y” in run.def in order to control the ouputs in the X**.nc
files. Or leave “ok_all_xml=n” to control outputs as with IOIPSL, from the
output.def file

● With XIOS, output files can be generated as single files (no need to rebuild
output files), by setting type=”one_file” par_access=”collective” parameters in
the attributes of the “file” definition in the xml:

<file_definition type=”one_file” par_access=”collective” >

23

Mixed bag of thoughts, advice and comments

➢ To run on a « local » machine (typically a multicore laptop):
➔ An MPI library must be installed, and the « arch » files must be

correspondingly modified to compile the model: 'makelmdz_fcm -arch
local [-mem] ...'

➔ It is always best to be able to use as much memory as possible:
ulimit -s unlimited

➔ It is also important to reserve enough private memory for OpenMP tasks:
export OMP_STACKSIZE=200M

➔ Use 'mpiexec -np n ...' to run with n processes,
and 'export OMP_NUM_THREADS=m' to use m OpenMP tasks

➔ Some examples and advice are given here (in English and French):
http://lmdz.lmd.jussieu.fr/utilisateurs/guides/lmdz-parallele-sur-pc-linux-en

➢ To run on clusters (Climserv, Ciclad, Gnome, ...) and machines of
supercomputing centres (IDRIS, CCRT,..):

➔ Check the centre's documentation to see how to specify the number of
MPI processes, OpenMP tasks, local limitations (memory, run time) for
batch submission of jobs, etc.

➔ Some information on appropriate job headers for some of the machines
widely used at IPSL is gathered here (in French):

https://forge.ipsl.jussieu.fr/igcmg/wiki/IntegrationOpenMP

24

To summarize

► In the physics, as long as there is no communication between columns, you can
develop and modify code “as if in serial”. Only mandatory requirement (for OpenMP):
variables which have a SAVE attribute have to be declared as !$OMP
THREADPRIVATE.

➔ Do take the time to check the correct integration of modifications! Results should
be identical (bitwise) when the number of processes or OpenMP threads is
changed (at least when compiling in 'debug' mode).

► In the dynamics, parallelism is much more intrinsic; one should really take the time
to understand the whole system before modifying any line of code.

► One can compile in any of the following parallel modes: mpi, omp or mpi_omp
makelmdz_fcm -mem -parallel [mpi|omp|mpi_omp]

► A run should use as many cores as possible, without forgetting that the maximum
number of MPI processes = number of nodes along the latitude / 3 and that it is
usually best to use 1 OpenMP task for every 4 or 5 points along the vertical.

► To optimize the workload among different MPI processes, run a first month with
adjust=y in run.def. And then use the obtained bands_resol_Xprc.dat files for the
following simulations.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

