
Tutorial: Compiling and running LMD in parallel

The LMDZ team

December 15, 2014

This tutorial focuses on setting up, compiling and running LMDZ on a parallel computer.

This document can be downloaded as a pdf file:

wget http://www.lmd.jussieu.fr/~lmdz/Distrib/TD_para.pdf

which should ease any copy/paste of command lines to issue.

This tutorial is for users who want to learn the basic steps needed to be able to run parallel
versions of LMDZ on their computer (people using the LMD computers should use recent com-
puters such as ”mambo”). Note that this implies the prerequisite that there is a working MPI
library already installed on the machine.

Throughout this tutorial we will assume that you are working on the LMD machine ”mambo”,
for which an MPI library using the gfortran compiler is installed in the following directory1:

/usr/lib64/openmpi/1.4.5-gfortran

Depending on your environment variables and settings, it is recommended (mandatory on LMD
machines) to set available stacksize (which is roughly the amount of memory your program is al-
lowed to request from the system) to maximum and add the MPI library path to LD LIBRARY PATH
(this variable tells programs where to look for needed dynamical libraries at run time):

ulimit -s unlimited
export LD_LIBRARY_PATH=/usr/lib64/openmpi/1.4.5-gfortran/lib:$LD_LIBRARY_PATH

1 Running the install.sh script

You should have already installed the model, using the install.sh script, as instructed in the first
LMDZ tutorial.

2 Setting up the arch files

In order to enable MPI and OpenMP, one has to set the corresponding options in arch files prior
to compilation. In practice, this means you must create arch-para.fcm and arch-para.path
files (in the arch sudirectory of the LMDZ5 directory).
The arch-para.path should simply be a copy of the arch-local.path file that was generated by
the install.sh script, and the arch-para.fcm should be something like2:

1If running on your own machines, you will of course have to adapt MPI paths to point to the appropriate
location. There are various available MPI libraries downloadable from the Internet, such as OpenMPI or MPICH.
What is important to know is that the MPI library must have been compiled with the same compiler than the one
used to compile LMDZ.

2Check out the files in the arch directory for examples relative to other compilers; e.g. ifort in the Ada arch
files.

1

%COMPILER /usr/lib64/openmpi/1.4.5-gfortran/bin/mpif90
%LINK /usr/lib64/openmpi/1.4.5-gfortran/bin/mpif90
%AR ar
%MAKE make
%FPP_FLAGS -P -traditional
%FPP_DEF NC_DOUBLE
%BASE_FFLAGS -fdefault-real-8
%PROD_FFLAGS -O3 -funroll-loops
%DEV_FFLAGS -g -O1 -Wall
%DEBUG_FFLAGS -g -O0 -Wall -fbounds-check -ffpe-trap=invalid,zero,overflow
%MPI_FFLAGS -fcray-pointer -I/usr/lib64/openmpi/1.4.5-gfortran/include
%OMP_FFLAGS -fopenmp
%BASE_LD
%MPI_LD -L/usr/lib64/openmpi/1.4.5-gfortran/bin/lib -lmpi
%OMP_LD -fopenmp

3 Compiling and running LMDZ in MPI

Once the arch files are correctly set, from the LMDZ5 directory, compile the model in MPI mode:

makelmdz_fcm -arch para -mem -parallel mpi -d 48x36x19 -j 8 gcm

The executable, gcm 48x36x19 para mem.e, is generated in the bin subdirectory.

Once the model has been successfully recompiled, run a simulation. To do so, create a new sub-
directory, e.g. BENCH48x36x19 mpi, in LMDZ5 and copy boundary conditions, initial con-
ditions and parameter files (limit.nc, star*nc, *.def) over from directory BENCH48x36x19,
along with the newly created excutable.

To run, you will need to use the mpirun utility (from the MPI library) and specify the number
of processes to run on (using the -np option), e.g. 4:

/usr/lib64/openmpi/1.4.5-gfortran/bin/mpirun -np 4 gcm_48x36x19_phylmd_para_mem.e
> listing 2>&1

The run should be much shorter than the equivalent serial run (verify this!).

When running in parallel, each MPI process creates its own hist* files. You will thus obtain
for instance a files histday.0001.nc, histday.0001.nc, histday.0002.nc and histday.0003.nc which
contains data relative to the sets of atmospheric columns managed by each process. To combine
the output files from different processes into a single file containing the full dataset, use the IOIPSL
rebuild script. The rebuild script is generated when installing IOIPSL When installing IOIPSL,
a modipsl directory was created and the rebuild script installed in modipsl/bin.
For each type of file, histday, histmth, etc., simply issue a command of the likes of:

rebuild -o histday.nc histday.000*

to generate the recombined output file.

You can check that the output files thus generated are identical to the ones generated by the
serial run. Likewise for the restart.nc and restartfi.nc files. Note also that the listing file for
the MPI run is larger than in the serial case, as most output messages are redundantly written by
all processes.

2

4 Compiling and running LMDZ in OpenMP

Compile LMDZ in OpenMP mode:

makelmdz_fcm -arch para -mem -parallel omp -d 48x36x19 -j 8 gcm

The executable, gcm 48x36x19 para mem.e, is generated in the bin subdirectory.

Once the model has been successfully recompiled, run a new simulation in a new subdirec-
tory of LMDZ5, e.g. BENCH48x36x19 omp and copy over boundary conditions etc. from
BENCH48x36x19, along with the newly created excutable.

Before launching the run, some OpenMP environment variables must be set to specify the
(maximum) amount of memory privately allocated to each thread, and the number of OpenMP
threads to run with, e.g. 4:

export OMP_STACKSIZE=200M
export OMP_NUM_THREADS=4
./gcm_48x36x19_phylmd_para_mem.e > listing 2>&1

Note that this time the generated hist*nc files are unique, but suffixed 0000.nc. Again you can
check that the model outputs are the same than those obtained in serial and pure MPI runs.

5 Compiling and running LMDZ in mixed MPI/OpenMP

Compile LMDZ in mixed MPI/OpenMP mode:

makelmdz_fcm -arch para -mem -parallel mpi_omp -d 48x36x19 -j 8 gcm

Again, create a subdirectory in which to run the model. All that was mentionned in the
previous sections on pure MPI and OpenMP runs combine when using the mixed mode. So
assuming you want to run using 3 MPI processes, each using 2 OpenMP threads:

export LD_LIBRARY_PATH=/usr/lib64/openmpi/1.4.5-gfortran/lib:$LD_LIBRARY_PATH
export OMP_STACKSIZE=200M
export OMP_NUM_THREADS=2
/usr/lib64/openmpi/1.4.5-gfortran/bin/mpirun -np 3 gcm_48x36x19_phylmd_para_mem.e
> listing 2>&1

Since you have used 3 MPI processes, output hist files will be split in 3 (i.e. histday 0000.nc,
histday 0001.nc and histday 0002.nc) and should be recombined using the rebuild tool. Once
again, results should match those obtained with the serial, pure MPI, and pure OpenMP runs.

6 Adjusting and setting the workload between MPI tasks

In the directories where you did your MPI (or mixed MPI/OpenMP) run, you’ll find a bands
file, e.g. Bands 48x36x19 4prc.dat, which contains information on how many columns where
handled by each MPI process3.

The default behaviour, for LMDZ, is to load and follow the instructions of the bands file present
in the directory where it runs. If it cannot find such a file, it then automaticaly generates one

3The bands file contains information on how many columns are handled by each MPI process, but also for each
of the four main ”code steps”: dynamics, tracer advection, dissipation, and physics. A bands file for N processes
thus contains 4N lines. Each line contains two elements: the process number and number of atmospheric columns
assigned to it.

3

(which was the case in the test runs you’ve done so far) which simply considers splitting evenly
the work between all available tasks. But this is rarely optimal.

There is an automated way of (iteratively) adjusting the workshare in LMDZ which can be
triggered by setting the adjust parameter in file run.def to y.
Important: The adjust option should only be used in pure MPI mode, and is intended to be
used to tune the bands file, and not to be used for production runs. Once a suitable bands file is
obtained (which typically requires a month, i.e. 30 days long run), one should revert the adjust
option to n and run with the resulting bands file.

Set up you experiment in a new directory. Import files (and MPI executable) there and set
adjust=y in the run.def file, as well as nday=30. Run using 4 processes:

/usr/lib64/openmpi/1.4.5-gfortran/bin/mpirun -np 4 gcm_48x36x19_phylmd_para_mem.e
> listing 2>&1

Check out the produced Bands 48x36x19 4prc.dat file and compare to the more näıve one that
was previously generated.
To evaluate if this bands file is ”converged”, copy it aside for future reference and re-run LMDZ.

Note: At low resolution, and on a machine shared by many users, it is quite possible to obtain
surprising results with the automated load adjustment scheme. In principle the adjustment should
be done in a ”controlled” environment to be meaningful.

4

