
Parallelism in LMDZ

A short survival guide for those who
feel diagonally stuck in a parallel world

LMDZ course, December 11th 2013

2

Why go parallel ?

● To have simulations run faster by using multiple cores to share the
workload, each working “as independently as possible” (i.e.: with the
minimum communication/interaction with the other cores).

● To benefit from modern architectures (from laptops to supercomputers).

Which parallelism is implemented in LMDZ ?
● LMDZ is designed so that it can be compiled and run in serial (sequential)
or parallel mode (in various forms, MPI, OpenMP, or mixed MPI/OpenMP, as
will be discussed later).

● The implementation of the parallel modes has been thought of, and done
(Yann Meurdesoif, LSCE, IPSL), so that it can easily benefit from all
hardware platforms. The various aspects of parallelism in the code have
moreover been coded as to be the least intrusive for users and developers.

3

MPI and OpenMP parallelism paradigms
MPI : Distributed Memory parallelism

● The code to be executed is replicated on all CPUs in as many processes.

● Each process runs independently and by default does not have access to the other
precesses' memory.

● Data is shared via a message passing interface library (OpenMPI, MPICH, etc.)
which uses the interconnection network of the machine. Efficiency then essentially
relies on the quality of the interconnection network.

● The number of processes to use is given at runtime: mpirun -n 8 gcm.e

OpenMP : Shared memory parallelism

● This parallelism is based on the principle of multithreading. Multiple tasks (threads)
run concurrently within a process.

● Each task essentially has (shared) access to the global memory of the process.

● Loops are parallelized using directives (!OMP ... , which are included in the source
code where they appear as comments) interpreted by the compiler.

● The number of OpenMP threads to used is set via an environment variable
OMP_NUM_THREADS (e.g.: OMP_NUM_THREADS=4)

4

Hybrid MPI/OpenMP
programming

➢ Each MPI process launches OpenMP threads which have access to its
global memory. (threads also have private memory for specific variables)

➢ In LMDZ, MPI and OpenMP are differently implemented to best fit
requirements. The number of OpenMP threads per MPI process is fixed
and remains the same throughout a simulation.

5

Hybrid MPI/OpenMP
programming

Different parallization approaches in the dynamics and physics
➢ In the dynamics

Short time steps; many interactions between neighbouring meshes,
and therefore numerous cases of data exchange and synchronizations.
The subtler part of the parallelism in the code..

➢ In the physics
longer time steps; no interaction between neighbouring columns of the
atmosphere.

6

Parallelism in the dynamics

=> MPI tiling
● Tiling is by bands of latitude.
● A minimum of 3 latitude bands per MPI process is mandatory.
● But the work load is not the same for all latitudes (essentially because of the polar filter).
● Use option adjust=y (in gcm.def) to dynamically optimize (during the run) the band

distribution of processes.
➔ Run the GCM (in MPI mode only!) over at least a few thousand time steps to obtain a

Bands_**x**x**_*prc.dat file.
➔ Re-run the simulation using option adjust=n (with the Bands_* file in the run directory)

NB: if there is no Bands_* file, the GCM creates one with a uniform balance between processes

vertical
levels

7

Parallelism in the dynamics

=> OpenMP split
● The split is done along the vertical levels only (the outermost loop in most

computations).
● An indicate size of blocs to assign to each thread can be specified using option

omp_chunck=... in gcm.def.
● In practice, target chunks of 4 or 5 vertical levels for each OpenMP task (an optimal

compromise, but which may depend on the machine on which the code is run).

8

Parallelism in the physics
● The physics handles physical

phenomena which interact within a
single atmospheric column:
radiation, convection boundary
layer, etc.

● Individual columns of atmosphere
do not interact with one another.

● The paralellization strategy is to
distribute the colums of
atmosphere over all cores.

● The physics grid : klon_glo
geographic points over klev
vertical levels.
First node (1) => North pole,
last node (klon_glo) => South pole.

9

Parallelism in the physics
● The columns from the global domain are first distributed among the MPI processes.

● The global domain : klon_glo columns of atmosphere

● The columns of each MPI domain are assigned to the OpenMP tasks assigned to the
that process :

● In each MPI domain : klon_mpi columns : Σ klon_mpi = klon_glo
● In each OpenMP domain : klon_omp columns : Σ klon_omp = klon_mpi

● In practice, the size of the local domain klon is an alias of klon_omp (so as to behave
exactly as when running the serial code).
➔ Never forget that klon varies from one core to another.

10

Some code parameters linked to parallelism

Global grid : module mod_grid_phy_lmdz
● klon_glo : number of horizontal nodes of the global domain (1D grid)
● nbp_lon : number of longitude nodes (2D grid) = iim
● nbp_lat : number of latitude nodes (2D grid) = jjm+1
● nbp_lev : number of vertical levels = klev or llm

MPI grid : module mod_phys_lmdz_mpi_data
● klon_mpi : number of nodes in the MPI local domain.
● klon_mpi_begin :start index of the domain on the 1D global grid.
● klon_mpi_end : end index of the end of the domain on the 1D global grid.
● ii_begin : longitude index of the beginning of the domain (2D global grid).
● ii_end : longitude index of the end of the domain (2D global grid).
● jj_begin : latitude index of the beginning of the domain (2D global grid).
● jj_end : latitude index of the end of the domain (2D global grid).
● jj_nb : number of latitude bands = jj_end-jj_begin+1
● is_north_pole : .true. If the process includes the North pole.
● is_south_pole : .true. If the process includes the south pole.
● is_mpi_root : .true. If the process is the MPI master.
● mpi_rank : rank of the MPI process.
● mpi_size : total number of MPI processes.

11

Some code parameters linked to parallelism

OpenMP grid : module mod_phys_lmdz_mpi_data
● klon_omp : number of nodes in the local OpenMP domain.
● klon_omp_begin: beginning index of the OpenMP domain within the MPI domain.
● klon_omp_end : end index of the OpenMP domain.
● is_omp_root : .true. If the task is the OpenMP master thread.
● omp_size : number of OpenMP threads in thhe MPI process.
● omp_rank : rank of the OpenMP thread.

12

Coding constraints in the physics
● Nothing specific to worry about change (compared to serial case) if :

- There is no interaction between atmospheric columns
- No global or zonal averages need be computed
- There are no input or output files to read or write

● One mandatory thing to enforce for OpenMP : all variables declared as
SAVE or in « common » blocks must be protected by an !$OMP
THREADPRIVATE clause, for instance :

REAL, SAVE :: save_var
!$OMP THREADPRIVATE(save_var)

● Arrays must be allocated with the local size klon, since klon may vary from a
core to another; for instance :

ALLOCATE (myvar(klon))

Warning! Note that in the general case, myvar(1) or myvar(klon) are neither
North nor South poles.

● Use the logical variables, is_north_pole et is_south_pole if a specific
treatment for the poles is required

13

Data transfer in the physics
● Care is required if :

- there is some interaction between atmospheric columns
- some zonal or global averages need be computed
- files must be read or written

=> Then, some transfers between MPI processes and OpenMP tasks will be
required:

● All transfer routines are encapsulated and transparently handle
communications between MPI processes and OpenMP tasks.

● All are include in module : mod_phys_lmdz_transfert_para

The transfer interfaces handle data of all the basic types :
 REAL
 INTEGER
 LOGICAL
 CHARACTER : only for broadcast

The transfer interfaces moreover can handle fields of 1 to 4 dimensions.

14

Data transfer in the physics (continued)
Broadcast : the master process duplicates its data to all processes and tasks.

Independently of the variable's dimensions
CALL bcast(var)

Scatter : the master task has a field on the global grid (klon_glo) which is to be scattered to
the local grids (klon).

The first dimension of the global field must be klon_glo, and the one of the local field
must be klon

CALL scatter(field_glo,field_loc)

Gather : a field defined on the local grids (klon) is gathered on the global grid of the master
process (klon_glo).

The first dimension of the global field must be klon_glo, and the one of the local field
must be klon

CALL gather(field_loc,field_glo)

Scatter2D : same as Scatter exept that the global field is defined on a 2D grid of : nbp_lon x
nbp_lat.

The first and second dimensions of the global field must be (nbp_lon,nbp_lat), and the
first dimension of the local field must be klon

CALL scatter2D(field2D_glo,field1D_loc)

Gather2D : gather data on the 2D grid of the master process.

CALL gather2D(Field1D_loc,Field2D_glo)

15

Some examples

Reading physics parameters from files physiq.def and config.def
➢ Done in conf_phys.F90
➢ The master task read the value (call getin('VEGET',ok_veget_omp)
within an !$OMP MASTER clause) and then duplicates it to the other tasks
(after the !$OMP END MASTER , there is an ok_veget = ok_veget_omp)

Reading the initial state for the physics : startphy.nc
➢ Done in phyetat0.F
➢ The master task of the master process (if(is_mpi_root.and.is_omp_root)
or equivalently if(is_master)) reads the field on the global grid and then
scatters it to the local grids using the scatter routine.
➢ Encapsulated in the get_field routine of the iostart module.

Writing the final state for the physics : restartphy.nc
➢ Done in phyredem.F
➢ Encapsulated in routine put_field of the iostart module, put_field first
does a gather to collect all the local fields into a global field. Then the master
task of the master process writes the field in the restart file restarphy.nc.

16

Illustrative example of load data from a file, (simplified) extract from
phylmd/read_map2D.F90USE dimphy

USE netcdf
USE mod_grid_phy_lmdz
USE mod_phys_lmdz_para
...

REAL, DIMENSION(nbp_lon,nbp_lat) :: var_glo2D
REAL, DIMENSION(klon_glo) :: var_glo1D
REAL, DIMENSION(klon) :: varout

! Read variable from file. Done by master process MPI and master thread OpenMP
 IF (is_mpi_root .AND. is_omp_root) THEN
 NF90_OPEN(filename, NF90_NOWRITE, nid)
 NF90_INQ_VARID(nid, varname, nvarid)

 start=(/1,1,timestep/)
 count=(/nbp_lon,nbp_lat,1/)
 NF90_GET_VAR(nid, nvarid, var_glo2D,start,count)
 NF90_CLOSE(nid)

 ! Transform the global field from 2D to 1D
 CALL grid2Dto1D_glo(var_glo2D,var_glo1D)
 ENDIF

! Scatter global 1D variable to all processes
 CALL scatter(var_glo1D, varout)

17

Writing output IOIPSL files and rebuilding the results

➢ Each MPI process writes data for its domain in a distinct file. One thus
obtains as many files histmth_00XX.nc files as processes were used for the
simulation.

➢ The domain concerned by a given IOIPSL file is defined with a call to
histbeg, which is encapsulated in histbeg_phy (module iophy.F).

➢ Data is gathered on the master (rank 0) OpenMP task for each process.
Each MPI process then calls the IOIPSL routine histwrite, which is
encapsulated in histwrite_phy (module iophy.F).

➢ Warning: what is mentioned above is only true for outputs in the physicsoutputs in the physics;
it is also possible to make some outputs in the dynamics (triggered via
ok_dyn_ins and ok_dyn_ave in run.def), but for these, data is moreover
gathered on the master process so that there is only one file on output (which so that there is only one file on output (which
is a major bottleneck, performance-wise) => should only be used for is a major bottleneck, performance-wise) => should only be used for
debugging.debugging.

18

Writing output IOIPSL files and rebuilding the results

Once the simulation finished, one must gather the data in a single file.
This requires using the rebuild utility:

rebuild -o histmth.nc histmth_00*.nc

➢ rebuild is a utility distributed with IOIPSL
 See « How to install IOIPSL and the rebuild utility» in the LMDZ website FAQ

(http://lmdz.lmd.jussieu.fr/utilisateurs/faq-en)

➢ In the IDRIS and CCRT supercomputing centres, rebuild is available to all,
along with other common tools :

IDRIS
Ada/Adapp : /smphome/rech/psl/rpsl035/bin/rebuild

CCRT
Curie : /home/cont003/p86ipsl/X64/bin/rebuild

19

Mixed bag of thoughts, advice and comments
➢ To run on a « local » machine (typically a multicore laptop):

➔ An MPI library must be installed, and the « arch » files must be
correspondingly modified to compile the model: 'makelmdz_fcm -arch
local [-mem] ...'

➔ It is always best to be able to use as much memory as possible:
ulimit -s unlimited

➔ It is also important to reserve enough private memory for OpenMP tasks:
export OMP_STACKSIZE=200M

➔ Use 'mpiexec -np n ...' to run with n processes,
and 'export OMP_NUM_THREADS=m' to use m OpenMP tasks

➔ Some examples and advice are given here (in English and French):
http://lmdz.lmd.jussieu.fr/utilisateurs/guides/lmdz-parallele-sur-pc-linux-en

➢ To run on clusters (Climserv, Ciclad, Gnome, ...) and machines of
supercomputing centres (IDRIS, CCRT,..):

➔ Check the centre's documentation to see how to specify the number of
MPI processes, OpenMP tasks, local limitations (memory, run time) for
batch submission of jobs, etc.

➔ Some information on appropriate job headers for some of the machines
widely used at IPSL is gathered here (in French):

https://forge.ipsl.jussieu.fr/igcmg/wiki/IntegrationOpenMP

20

Illustrative Example of a purely MPI job (loadleveler) on Ada (IDRIS)

> cat Job_MPI

######################
ADA IDRIS
######################
@ job_name = test
@ job_type = parallel
@ output = $(job_name).$(jobid)
@ error = $(job_name).$(jobid)
Number of MPI processes to use
@ total_tasks = 32
Maximum (wall clock) run time hh:mm:ss
@ wall_clock_limit = 0:30:00
Default maximum memory per process is 3.5Gb, but one
can ask for up to 7.0Gb with less than 64 processes
@ as_limit = 3.5gb
End of job header
@ queue

poe ./gcm.e > gcm.out 2>&1

> llsubmit Job_MPI

21

Illustrative Example of a mixed MPI/OpenMP job (loadleveler) on Ada

> cat Job_MPI_OMP

######################
ADA IDRIS
######################
@ job_name = test
@ job_type = parallel
@ output = $(job_name).$(jobid)
@ error = $(job_name).$(jobid)
Number of MPI processes to use
@ total_tasks = 16
Number of OpenMP threads per MPI process
@ parallel_threads = 4
Maximum (wall clock) run time hh:mm:ss
@ wall_clock_limit = 0:30:00
Maximum memory per process is 3.5Gb x parallel_threads if more
than 64 processes; 7.0Gb x parallel_threads otherwise
@ as_limit = 14.0gb
End of job header
@ queue

Set the private stack memory for each thread
export OMP_STACKSIZE=200M

poe ./gcm.e > gcm.out 2>&1

> llsubmit Job_MPI_OMP

22

libIGCM

● The modipsl/libIGCM environment manages IPSL models (LMDZOR,
LMDZORINCA, IPSLCM5, LMDZREPR, ORCHIDEE_OL) as a platform which
simplifies extraction, installation and setting up simulations on the
supercomputers “traditionally” used at IPSL; documentation available on

http://forge.ipsl.jussieu.fr/igcmg/wiki/platform

● The distributed job headers and a few parameters may still need be modified
(e.g. memory requirements and maximum allowed run time).

● Recombination of the output files (rebuild) is automatically done.

● There are regularly modipsl/libIGCM courses (organized by Josefine Ghattas
& Anne Cozic) ; sometimes in French and sometimes in English.

http://forge.ipsl.jussieu.fr/igcmg/wiki/platform/formation

23

To summarize
► In the physics, as long as there is no communication between columns, you can
develop and modify code “as if in serial”. Only mandatory requirement (for OpenMP):
variables which have a SAVE attribute have to be declared as !$OMP
THREADPRIVATE.

➔ Do take the time to check the correct integration of modifications! Results should
be identical (bitwise) when the number of processes or OpenMP threads is
changed (at least when compiling in 'debug' mode).

► In the dynamics, parallelism is much more intrinsic; one should really take the time
to understand the whole system before modifying any line of code.

► One can compile in any of the following parallel modes: mpi, omp or mpi_omp
makelmdz_fcm -parallel [mpi|omp|mpi_omp] [-mem]

► A run should use as many cores as possible, without forgetting that the maximum
number of MPI processes = number of nodes along the latitude / 3 and that it is
usually best to use 1 OpenMP task for every 4 or 5 points along the vertical.

► To optimize the workload among different MPI processes, run a first month with
adjust=y in run.def. And then use the obtained bands_resol_Xprc.dat files for the
following simulations.

► Rebuild the output files once the run is over : rebuild -o histmth.nc histmth_00*.nc

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23

