Parallelism in LMDZ

A short survival guide for those who
feel diagonally stuck in a parallel world

LMDZ course, January 15, 2026

What is parallelism ?

e Simply based on dividing a task into many smaller ones handled
separately but simultaneously among workers'.
e e.9.. We want to translate the book ‘Les Miserables’, (V. Hugo, 1862, 5
cap. More than 1500 pages)
1. Assume we are all fluent in English and French
2. We divide the book in blocks of equal number of pages
3. Each one of us translates only his/her assigned pages independently
of the others (except for possible borderline cases, e.g. a sentence
starting at the end of a block and continuing in the next)
4. The translation of the whole book is finished once everyone is
finished
5. There needs be some organizer who will assign tasks and be
collecting all the translations to a single common final product.

 Parallel computing mimics this organisation.

* Making use of different cores, mainly with two paradigms: distributed
memory and shared memory

* Technically, computations are spread over different cores.

Why go parallel ?

* To have simulations run faster by using multiple cores to share the
workload, each working “as independently as possible” (i.e.: with the
minimum communication/interaction with the other cores).

* To benefit from modern architectures (from laptops to supercomputers).

Which parallelism is implemented in LMDZ ?

* LMDZ is designed so that it can be compiled and run in serial (sequential)
or parallel mode (in various forms, MPI, OpenMP, or mixed MP1/OpenMP, as
will be discussed later).

* The implementation of the parallel modes has been thought of, and done
so that it can easily benefit from all hardware platforms. The various aspects
of parallelism in the code have moreover been coded as to be the least
intrusive for users and developers.

MPI and OpenMP parallelism paradigms

MPI : Distributed Memory parallelism

* The code to be executed is replicated on all CPUs in as many processes.

* Each process runs independently and by default does not have access to the other
processes' memory.

* Data is shared via a message passing interface library (OpenMPI, MPICH, etc.) which
uses the interconnection network of the machine. Efficiency then essentially relies on the
guality of the interconnection network. As a new set of subroutines and functions: CALL
bcast, CALL gather, CALL scatter, ...

* The number of processes to use is chosen at runtime: mpirun -n 8 gcm.e

OpenMP : Shared memory parallelism

* This parallelism is based on the principle of multithreading. Multiple tasks (threads) run
concurrently within a process.

* Each task essentially has (shared) access to the global memory of the process.

 Loops are parallelized using directives (!$OMP ... , which are included in the source code
where they appear as comments) interpreted by the compiler.

* The number of OpenMP threads to used is set via an environment variable
OMP_NUM_THREADS (e.g.: OMP_NUM_THREADS=4)

MPI| processes OpenMP tasks
Hybrid MP1/OpenMP

programming > Task0 > OMP Master
> Task1 >

MPI Master "-:
- »_ Task0 > OMP Master

— o T m——
N . | .
.

\\\\ m »(_:Task 0 OMP Master

» Each MPI process launches OpenMP threads which have access to its
global memory. (threads also have private memory for specific variables)

> In LMDZ, MPI and OpenMP are differently implemented to best fit
requirements. The number of OpenMP threads per MPI process is fixed
and remains the same throughout a simulation.

» No need to try to use more cores than available on your machine!

MPI| processes OpenMP tasks

» Task0 > OMP Master
»_ Task1 >

Hybrid MP1/OpenMP
programming

MPI Master —
— > Task d_:} OMP Master
am & =
f T -
. program | > Task1 >
\\.'m.________ __'______,,.,-’r/‘)l----.___""--—....__L m h:":::I?SK_-O_:T____" OMP Master
= Task 1
\\\\ m "<fr35k@ OMP Master
= Task 1

Different parallization approaches in the dynamics and physics

> In the dynamics
Significant interactions between neighbouring meshes, and therefore
numerous cases of data exchange and synchronizations. The subtler
part of the parallelism in the code..

> In the physics
There is no interaction between neighbouring columns of the
atmosphere, which can easily be handled separately.

Parallelism in the dynamics

S
longitud %oy, %,
pdle ongitude b@/ 74
nord \\\\
PROCERSI|O b
N
PROCESS|1
2
c
& N
PROCERS?
~ L N
pOIe PE EES|2
sud ‘“[

=> MPI tiling

* Tiling is by bands of latitude.

* A minimum of 2 latitude bands per MPI process is mandatory.

* But the work load is not the same for all latitudes (essentially because of the polar filter).

* Use option adjust=y (in gcm.def) to dynamically optimize (during the run) the band
distribution of processes.
> Run the GCM (in MPI mode only!) over at least a few thousand time steps to obtain a

Bands_**x**x** *prc.dat file.

> Re-run the simulation using option adjust=n (with the Bands_* file in the run directory)
NB: if there is no Bands_* file, the GCM creates one with a uniform balance between processgs

Parallelism in the dynamics

A

Z

Ll

[

]

||

|'

]

EREEE

— -
A5k 1)
AT =

HEEERNENEREENEEE
NN NEENENNa

HEEEENEEEE e

HEEEE

|'

PRt

=> OpenMP spliting
* The split is done along the vertical levels only (the outermost loop in most
computations).
* An estimate size of blocs to assign to each thread can be specified using option
omp_chunck=... in gcm.def.
* In practice, target at least chunks of ~10 vertical levels for each OpenMP task (an

optimal compromise, but which may depend on the machine on which the code is run).
8

Parallelism in the physics

* The physics handles physical
phenomena which interact within a
single atmospheric column:
radiation, convection boundary

layer, etc.
o

* Individual columns of atmosphere
do not interact with one another.

* The paralellization strategy is to
distribute the colums of
atmosphere over all cores.

M

e The physics grid : klon_glo

geographic points over klev M1 5

vertical levels.
First node (1) => North pole,
last node (klon_glo) => South pole.

@ grille "scalaire” de la dynamique

[@] grille physique
™M IM+1
1 2 3 4 5 6 7
——
[®] —+ 5] °® : e o t °® —— @
u u u u u u u
v vl v v v, v vl
2 3 q 5 6 7
O (- -b Ol —p -l —-O e —
v vl v vl vl v vl
8 9 I | I 1
O —— [0 — ?ﬂ (T]@ n h N ?E TR T
v v] v vl vl v v
1 I I | I 1
EI {m ?EI N ?EI {m TEI T %l {m %I m @ u
v vl v v vl v v
2
Iﬂil M @ u @ TR u @ h— @ u - © 0
_. "boite" grille s-:allaire rlonv
vig-D) rlonu (1,IM+1) rlonu
T(ij) rlonv (1,IM+1)
@ — — @ rlatu (1,JM+1)
uli-1,j) uf(i.j) rlatv(1,JM)
v(ij)

e —— 0

rlatv

rlatu

Parallelism in the physics

* The columns from the global domain are first distributed among the MPI processes.
* The global domain : klon_glo columns of atmosphere

* The columns of each MPI domain are assigned to the OpenMP tasks assigned to the
that process :
* In each MPI domain : klon_mpi columns : = klon_mpi = klon_glo
* In each OpenMP domain : klon_omp columns : > klon_omp = klon_mpi

* In practice, the size of the local domain klon is an alias of klon_omp (so as to behave
exactly as when running the serial code).
> Never forget that klon varies from one core to another.

HEEEE
Fask 0
Prodesd N rs%“
ask 2
29
ro .e|s=. W41

10

Time for an illustrative and
Interactive example

N.B: There is a dedicated Tutorial about installing and using LMDZ in parallel 11

Some LMDZ code linked to parallelism

Different parallelism control parameters:
* klon_glo, nbp_lon, nbp_lat, nbp_lev

* klon_mpi, klon_mpi_begin, klon_mpi_end, ii_begin, ii_end, jj_beqgin, jj_end, jj_nb,

IS_north_pole, is_south_pole, is_mpi_root, mpi_rank, mpi_size
* klon_omp, klon_omp_begin, klon_omp_end, is_omp_root, omp_size, omp_rank

Some general considerations in physics:
* For OpenMP, declare all SAVE variables as THREADPRIVATE.:
REAL, SAVE :: save var

ISOMP THREADPRIVATE(save_var)
* Allocation of variables with "klon' (real size within each core)

ALLOCATE (myvar(klon))
* Neither North or Pole grid points are:

myvar(l) or myvar(klon)

Data transferts:
* The transfer interfaces handle data of all the basic types : REAL,
INTEGER, LOGICAL, CHARACTER (only for broadcast)
 The transfer interfaces moreover can handle fields of 1 to 4 dimensions

12

Data transfer in the physics (examples)

Broadcast : the master process duplicates its data to all processes and tasks.
Independently of the variable's dimensions
CALL bcast(var)

Scatter : the master task has a field on the global grid (klon_glo) which is to be scattered to

the local grids (klon).
The first dimension of the global field must be klon glo, and the one of the local field

must be klon

CALL scatter(field_glo,field loc)
MPI Bcast MPI _Scatter

of o
O« O 0" O O= O 0= 0

Scatter2D : same as Scatter except that the global field is defined on a 2D grid of : nbp_lon
X nbp_lat.
The first and second dimensions of the global field must be (nbp_lon,nbp_Ilat), and the
first dimension of the local field must be klon
CALL scatter2D(field2D _glo,field1D _loc)

Figures from: 13

Note however that in LMDZ the Scatter/Gather process is coded across both MPI and OpenMP.

http://mpitutorial.com/mpi-scatter-gather-and-allgather/

Gather : a field defined on the local grids (klon) is gathered on the global grid of the master

process (klon_glo).

The first dimension of the global field must be klon_glo, and the one of the local field must
be klon
CALL gather(field_loc,field_glo)

MPI|_ Gather

OLBO _JOLEOL
@.__-.

Gather2D : gather data on the 2D grid of the master process.
CALL gather2D(Field1D loc,Field2D _glo)

Figures from: 14
Note however that in LMDZ the Scatter/Gather process is coded across both MPI and OpenMP.

http://mpitutorial.com/mpi-scatter-gather-and-allgather/

lllustrative example of load data from a file, (simplified) extracted from
hylmd/r map2D.F

USE dimphy phylmd/read_map 90

USE netcdf

USE mod grid phy lmdz

USE mod phys lmdz para

REAL, DIMENSION(nbp lon,nbp lat) :: var glo2D ! On the global 2D grid
REAL, DIMENSION(klon glo) :: var _glolD ! On the global 1D grid
REAL, DIMENSION(klon) :: varout l On the local 1D grid

I Read variable from file. Done by master process MPI and master thread OpenMP
IF (is mpi root .AND. 1is omp root) THEN
NFO90 OPEN(filename, NF90 NOWRITE, nid)
NFO0 INQ VARID(nid, varname, nvarid)

start=(/1,1,timestep/)

count=(/nbp lon,nbp lat,1/)

NFO9O GET VAR(nid, nvarid, var glo2D,start, count)
NFO0 CLOSE(nid)

l Transform the global field from 2D to 1D
CALL grid2DtolD glo(var glo2D,var glolD)
ENDIF

I Scatter global 1D variable to all processes
CALL scatter(var glolD, varout)
15

Writing output IOIPSL files and rebuilding the results

» Each MPI process writes data for its domain in a distinct file. One thus
obtains as many files histmth_00XX.nc files as processes were used for the
simulation.

» The domain concerned by a given IOIPSL file is defined with a call to
histbeg, which is encapsulated in histbeg_phy (module iophy.F).

» Data is gathered on the master (rank 0) OpenMP task for each process.
Each MPI process then calls the IOIPSL routine histwrite, which is
encapsulated in histwrite_phy (module iophy.F).

» Warning: what is mentioned above is only true for outputs in the physics;

it is also somewhat possible to make some outputs in the dynamics (triggered
via ok _dyn_ins and ok _dyn_ave in run.def), but for these, data is moreover
gathered on the master process so that there is only one file on output (which
IS a major bottleneck, performance-wise) => should only be used for
debugging. 16

Writing output IOIPSL files and rebuilding the results

Once the simulation finished, one must gather the data in a single file.
This requires using the rebuild utility:

rebuild -o histmth.nc histmth_00*.nc

> rebuild is a utility distributed with IOIPSL
See « Whatls: the IOIPSL library» on LMDZPedia
https://Imdz-forge.Imd.jussieu.fr/mediawiki/LMDZPedia

> If using the install _Imdz.sh script then the rebuild utility is automatically built
and placed in the “modipsl/bin” subdirectory; Look at script reb.sh in the

BENCH32x32x39 test case:
modipsl="pwd | sed -n -e 's/modipsl.*.$/modipsl/p"
file=$1

$modipsl/bin/rebuild -o $file.nc ${file} 0*.nc
if [-f $file.nc] ; then rm -f ${file} O0*nc ; fi
17

https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia

The XIOS library (there is a dedicated tutorial)

* Next generation of the output library (IOIPSL not upgraded any more, will

become depreciated).
https://forge.ipsl.jussieu.fr/ioserver

* Having installed the XIOS library (reference versions on global IPSL account
on Ada and Curie), compile LMDZ using the “-io xios” option:

makelmdz_fcm -arch somearch -parallel [mpijmpi_omp] -io xios
e Qutput is managed via xml' files
e Set flag “ok_all xml=y” (or equivalently “ok_all xml=true”) in run.def in order
to control the ouputs in the X**.nc files.
* With XIOS, output files can be generated as single files (no need to rebuild
output files), by setting type="one_file” par_access="collective” parameters in
the attributes of the “file” definition in the xml:

<file_definition type="one file” par_access="collective” >

18

To summarize

» In the physics, as long as there is no communication between columns, you can
develop and modify code “as if in serial”. Only mandatory requirement (for OpenMP):
variables which have a SAVE attribute have to be declared as $OMP
THREADPRIVATE.
> Do take the time to check the correct integration of modifications! Results should
be identical (bitwise) when the number of processes or OpenMP threads is
changed (at least when compiling in ‘debug' mode).

» In the dynamics, parallelism is much more intrinsic; one should really take the time
to understand the whole system before modifying any line of code.

» One can compile in any of the following parallel modes: mpi, omp or mpi_omp
makelmdz_fcm -parallel [mpijomp|mpi_omp]

» A run should use as many cores as possible, without forgetting that the maximum
number of MPI processes = number of nodes along the latitude / 2 and that it is
usually best to use 1 OpenMP task for every ~10 points along the vertical.

» To optimize the workload among X MPI processes, run a first month with adjust=y
in run.def. And then use the obtained bands resol Xprc.dat files for the following
simulations.

19

Mixed bag of thoughts, advice and comments

» To run on a « local » machine (typically a multicore laptop):

> An MPI library must be installed, and the « arch » files must be
correspondingly modified to compile the model: 'makelmdz_fcm -arch
local ...

It is always best to be able to use as much memory as possible:

ulimit -s unlimited

It is also important to reserve enough private memory for OpenMP tasks:
export OMP_STACKSIZE=200M

Use 'mpirun -np n ..." to run with n MPI processes,

and 'export OMP_NUM_ THREADS=m'to use m OpenMP tasks

Some examples and advice are given in LMDZPedia: search for “parallel”
or “MPI” or “OpenMP” ...

=> https://Imdz-forge.Imd.jussieu.fr/mediawiki/LMDZPedia

» To run on clusters (MESOIPSL, aka Spirit, ...) and machines of national
supercomputing centres (IDRIS, TGCC, CINES..):

> Check the centre's documentation to see how to specify the number of
MPI processes, OpenMP tasks, local limitations (memory, maximum run
time) for batch submission of jobs, etc.

> Ask your favourite IPSL colleagues for some advice and their job headers

on these machines. 20

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

