LMDZ

Dynamics/physics organization,
Grids,
Time stepping,
Dissipation...

LMDZ courses, January 14, 2026



Overview of course topics

* Grids:
— Horizontal grids in the physics & dynamics
— Vertical discretization
* Time marching:
— Generalities about time marching schemes
- What is used in LMDZ
— Longitudinal polar filter
» Lateral diffusion and sponge layer:
- Energy cascade
— lllustrative example of diffusion
- Sponge layer near model top



Grids in LMDZ

Dynamics Physics

Dynamical tendencies

Y

T(z) T(z)
ql(z) ql(z)

Tendencies due to
- radiative transfer
- condensation

- subgrid dynamics

Physical tields

Separation between physics and dynamics:

* “dynamics”: solving the GFD equations on the sphere; usually with the assumption of
a hydrostatic balance and thin layer approximation. Valid for all terrestrial planets.

* “physics”: (planet-specific) local processes, local to individual atmospheric columns.



Horizontal grids in LMDZ

Grid dimensions specified when
compiling LMDZ:
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LMDZ, Z for Zoom
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grossimx/grossimy : zoom factor along

x/y directions (i.e. lon/lat)
Computed as the ratio of the smallest mesh (l.e. in the zoom), compared to the mesh
size for a global regular grid with the same total number of points.

dzoomx/dzoomy : fraction of the grid containing the zoomed area: dzoom*360° by
dzoomy*180°



LMDZ, Z for Zoom
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Zoom centred on coordinates :
clon : longitude (degrees) /
clat : latitude (degrees) 7—- - ——
grossimx/grossimy : zoom factor along R OIPL T

x/y directions (i.e. lon/lat)
Computed as the ratio of the smallest mesh (l.e. in the zoom), compared to the mesh
size for a global regular grid with the same total number of points.

taux/tauy : steepness of the transition between inner zoom and outer zoom meshes
(typically one tries to avoid sharp transitions; tau ~ 3 is a reasonable value)
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Nudging towards

analyses or reanalyses with
chosen time constants

Strong nudging

(t=30min)

Weak to
moderate
nudging
(t=10 days)

Nudging in LMDZ
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Vertical discretization in LMDZ

Model levels are hybrid sigma-pressure levels:

P(level,time) = ap(level) + bp(level) . Ps (time)

hybrid coordinates ap(k) and bp(k) are fixed for a given model run

Surface pressure Ps(t) varies during the run -
Near the surface ap ~ 0 OrTT T T T —
=> bp(k) ~ P/Ps
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Vertical discretization in LMDZ

Setting model levels via the def files (also a function of number of vertical levels) :

vert_sampling = strato_custom : customable (via other parameters in .def file; see
next slide) discretization for stratospheric extensions.

Multiple other possibilities from this “default”:

vert _sampling = strato : a default for stratospheric extensions

vert _sampling = sigma : automated generation of purely sigma levels
vert_sampling = param : load values from a “sigma.def” file
vert_sampling = tropo : a default for tropospheric simulations
vert_sampling = read : read ap() and bp() from file “hybrid.txt”

=> Typically you don't need to mess with the vertical discretization,
the default behaviour most likely matches your needs.
=> Check out routine dyn3d_common/disvert.F90



Vertical discretization in LMDZ
lllustration of typical altitudes and layer thickness of L19/L.39/L79/L95 grids

O—E 1L95B
C—© CMIP6-L.79

LI CMIP3-1.19
[ T T T T o Ty

<> CMIPS5-1L.39 [T

5 6 7 8 9 10 11
d Z (km)

2.5

0.5

=3 L95B
C— CMIP6-1L.79 |
&< CMIPS-1L.39
LN CMIP3-1.19
1 I 1 I 1 I | I

0.2 03 04 05 06 0.7
d Z (km)

Over the whole atmosphere
0<z<~80km

Near the surface
0<z<3km

“Standard” CMIP6
L79 settings
(see DefLists/vert_L79.def)

vert_sampling=strato_custom

vert_scale=7.
vert_dzmin=0.017
vert_dzlow=1.
vert_zOlow=8.7
vert_dzmid=2.
vert zOmid=70.
vert_h_mid=20.
vert_dzhig=11.
vert_zOhig=75.
vert_h_hig=20.



Questions ?



Time marching schemes

* The big picture: you want to solve

df(t)
f@=0) = Jfo

from a known Initial condition at time t=0 to time t=...

e So itis all about using a time marching scheme, built on Taylor
expansion for evaluation of the time derivative, and choosing at
which time level t=n.ot the right hand side term R[f(t),t] is to be
evaluated :

(61)°

ot |
f(to +dt) = f(to) + Ff (fo) 1 2!

" (te) + ...



Time marching schemes

* EXxplicit Euler scheme (1st order in time):
df(t) fﬂ,—f—l _ f’n;

at 5t
R(f,t) = R(f(tn),tn)

* Implicit Euler scheme (1st order in time):

df(t) - fr1+1 — fn
dt - ot
R(f t) — R(f(tﬂf+1)3tT1+1)
* Crank-Nicholson scheme (2 order in time):

df(t) - fn—i—l — f'n,

dt ot

R(f t) ~ R(f(tn+1) tn—f—12) —+ R(f(tn,) tn)



Time marching schemes

* Matsuno scheme: a predictor-corrector (Euler explicit-Euler Implicit)
scheme (1st order):

df(t) . fﬂ,—}—l T f’n-
dt o ot
fp (tn+1) — f(tn) + 5t'R(f(tn)= t‘n)

R(ft) — R(fp(t*rwrl): tn+1)

* Leapfrog scheme: use encompassing time steps to evaluate the
derivative (2 order):

df(t) fn+1 _ fn—l

g

dt 20t
R(f.,t) = R(f(tn),tn)




 lllustrative example, on a decay equation (known solution!)

dq(t)

Time marching schemes
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Time marching schemes

 |llustrative example, on a decay equation

dq(t) 1 +
dt

= —;Q(t) — q(t) = qoe =

* Resulting integration schemes:

| ot
ERE: gt — 1 — —} g’
B T
| 1
EI: g+l — -
4 o 61%,%} 4
"1 — 5t/(27)
CN: g+l — -
* | {51‘.,”{2?}] q

e Stability requirement (CFL) for EE : dt/tau < 2



q/q0

Time marching schemes
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* 4 Integration steps per unit of t/tau
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Time marching schemes
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* 8 Integration steps per unit of t/tau
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Time marching schemes
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Time marching in LMDZ

Time splitting between physics/dynamics/dissipation:
oy
ot

* Dynamics : Leapfrog-Matsuno scheme
Using day step dynamical steps per day
Leapfrog steps with a Mastuno step every iperiod step
* Physics : Explicit Euler
Every iphysiq dynamical steps (multiple of iperiod)
* Dissipation: Explicit Euler
Every dissip period dynamical steps (multiple of iperiod)

— Dyn(v) + Phy(¥) + Dissip(i)



Side note about explicit or
iImplicit time marching schemes

Even when solving linear spatio-temporal boundary-value
problems, e.g.:. dA = 9%A
dt " D2
The explicit Euler approach leads to a straightforward expression
for grid point values (but with stability constraints) :
Akl _ Ak =
5t T hZ
Whereas the implicit Euler approach leads to a
(tridiagonal) system of equations to solve:
f’l,f:_'_l — :15" Iy

_ ™ [ ak+1 o Ak+1 | k41
5t L2 [Az:—l — 24 Ae:+1]

=> requires more computations, but may be necessary if
time-stepping constrains require using large time steps.

[AY | —2AF + AF ]




Side note about tridiagonal
system solving

When needing to solve a tridiagonal system of the form:
T.x=y , T tridiagonal matrix, x & y vectors

Rather than invert T (costly!) to generate T (dense matrix) and then compute
x=T-L.y (matrix-vector product)

Use the LU decomposition (Gaussian elimination) of T to split the problem into
two very simple sub-problems:

1) L.U=T, L and U are bidiagonal (lower/upper) matrices
2) Solve L.z=y for vector z (forward substitution step)
3) Solve U.x=z for vector x (backward substitution step)



Side note about incorporating
boundary conditions (BC)

8fgé’t) = R(f,z,t) with BC: f(xp,t) = B(xp,1t)

* In practice one needs to treat specifically the spatial boundary conditions, which
could be either imposed on the value (Dirichlet) or its derivative (Neumann) or a

mix of the two (Robin) or ...

* The choice of using an implicit or explicit representation also impacts the
Incorporation of the boundary conditions (along spatial directions)

Explicit (B, known) => f”“(% L ~ R, with BC: B,

Implicit (B_,, unknown) => an(St n ~ R,y with BC: B, 41




Tracer advection in LMDZ

Use of the Van Leer | scheme (1977), a  Scheme I by Van Leer (1977)

second order finite volume scheme with ¢ e
slope limiters (e.g. MUSCL, MINMOD) ‘ //ﬁﬂf&
(Hourdin et Armengaud, 1999). i-1 i 1 > X

Guaranties of fundamental physical
properties of transport :

conservation of the total quantity,
positivity, monotony, non amplification
of extrema, weak numerical diffusion

Centered finite differences (second order)
T pve

-1 i +1 " X
C{Upwind first order scheme (Godunov, 1952)

pvcot

o | —t—
I-1 i 1+1 X

v

* CFL requirement, for an advection velocity Umax :
Umax.(dt/dx) = cte , with cte ~ 0(1)



Tracer advection in LMDZ

* In practice: Tracer names and various properties are set in the
tracer.def file. e.q.:

&version=1.0

&Imdz

default type=tracer phases=g hadv=10 vadv=10 parent=air
H20 phases=g hadv=14 vadv=14

H20 phases=| havd=10 vadv=10

H20 phases=s hadv=10 vadv=10
Rn

Pb
* Scheme “10” : Van Leer scheme
* Scheme “14” ;. Dedicated modified scheme for water vapor
* Other (experimental) schemes are coded; see dyn3d/advtrac.F90



Tracer advection in LMDZ

* In practice: Tracer names and various properties are set in the
tracer.def file. e.q.:

&version=1.0

&Imdz

default type=tracer phases=g hadv=10 vadv=10 parent=air
H20 phases=g hadv=14 vadv=14

H20 phases=| havd=10 vadv=10

H20 phases=s hadv=10 vadv=10
Rn

Pb
* phases: gas/liquid/solid for a given tracer

* parent: air or another tracer (for isotopes)+ possibility of “tagging”
see https://Imdz-forge.lImd.jussieu.fr/mediawiki/LMDZPedia


https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia

Questions ?



* Alon-lat grid implies that the meshes
tighten dramatically as the pole is
approached.

 CFL conditions there would dictate
using an extremely small time step
for the time marching scheme.

* Longitudinal (Fourier) filtering, removing high spatial frequencies, is used to enforce
that resolved features are at the level of those at ~60° (where longitudinal resolution is
half of that at the equator).

* In addition near the poles there is some longitudinal grouping of meshes (applied to
the divergence of air transport) by bunches of 2ngour (typically ngroup=3) which implies
that the number of points along longitudes of the GCM must be a multiple of 2ngroup!
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Energy spectra and lateral g

Lindborg (1999), egn 71

dissipation
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* Observations (Nastrom & Gage 1985,
Lindborg 1999) collected over length
scales from a few to thousands of km
display a characteristic energy cascade
(from Skamarock, 2004). I T T T T BT

Wavenumber (radians m-1})

104

Fic. 1. Nastrom and Gage (1985) spectrum derived from the GASP
aircraft observations (symbols) and the Lindborg (1999) functional
fit to the MOZAIC aircraft observations.

* |n order to fulfil the observed energy cascade from resolved
scales to unresolved scales in GCMs, a dissipation term is

added: |
S ek

-

Dissip(y) = N 294,



Lateral dissipation in GCMs

as a tool to pin the energy

cascade B S
Figures from Numerical Techniques for Global Atmospheric Models, o E‘JL4T*;5"1|hid ryperitusion

Lauritzen et al. (eds), 2010 e e
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lllustrative example of dissipation

« Simple 1D diffusion equation toy model:

d.A o s |
dt v a2

* Von Neumann (Fourier mode) analysis

Az () = ap(t)-sin(kx)

* Explicit Euler time marching (with stability condition!):
aptl = (1 — uﬁ.:zﬂt) .

Note that mode damping is stronger for large k



lllustrative example of dissipation
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Temporal evolution, from an initial condition consisting of 2 sine
modes and an extreme (2 grid points wavelength) “numerical mode”



Controlling dissipation in LMDZ
* Parameters in file gcm.def:

dissip_period: Apply dissipation every dissip_period dynamical steps (or
specify 0 to let model pick an appropriate value)

nitergdiv: number of iterations on velocity dissipation operator grad.div

nitergrot: number of iterations on velocity dissipation operator grad.rot

niterh: number of iterations on temperature dissipation operator div.grad
Usual values: nitergdiv=1, nitergrot=2, niterh=2

tetagdiv: dissipation time scale (s) for smallest wavelength for u,v (grad.div
component)

tetagrot: dissipation time scale (s) for smallest wavelength for u,v (grad.rot
component)

tetatemp: dissipation time scale (s) for smallest wavelength for potential
temperature (div.grad)

values depend on horizontal resolution



Controlling dissipation in LMDZ

 Parameters In file gcm.def:

tetagdiv: dissipation time scale (s) for smallest wavelength for u,v
(grad.div component)

tetagrot: dissipation time scale (s) for smallest wavelength for u,v
(grad.rot component)

tetatemp: dissipation time scale (s) for smallest wavelength for
potential temperature (div.grad)

optimal teta values depend on horizontal resolution

* Moreover there is a multiplicative factor for the dissipation
coefficient, which increases with model levels (see

dyn3d_common/inidissip.F90), which can be controlled by flag
“vert_prof_dissip”



The sponge layer

* In addition to lateral dissipation, it is necessary to damp vertically
propagating waves (non-physically reflected downward from model

top).

* The sponge layer is limited to topmost layers (usually 4) and added
during the dissipation step.

* Sponge modes and parameters (gcm.def):

iflag_top_bound: O for no sponge, 1 for sponge over 4 topmost
layers, 2 for sponge from top to 100 times topmost layer pressure

mode_top_bound: O for no relaxation, 1 to relax u,v to zero, 2 to
relax u,v to their zonal mean, 3 to relax u,v and potential temperature
to their zonal mean.

tau_top_bound: inverse of characteristic time scale at the topmost
layer (halved at each successive descending layer)



Where to get typical values
of the run.def/gcm.def parameters

* Check out the various examples of gcm.def * files located in

the LMDZ/DefLists subdirectory

* Some examples of specific cases of Zoomed simulation setups

are detailed in a collaborative document; get the link by
searching “Zoom collection” on LMDZPedia :
https://Imdz-forge.Imd.jussieu.fr/mediawiki/LMDZPedia
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https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia

Some rules of thumb for run.def parameters

* Time steps in LMDZ:
dynamical time steps: dtvr = daysec / day_step
physics time step: dtphys = iphysiq * dtvr
dissipation time step: dtdiss = dissip_period * dtvr
tracer advection time step: dtvrtrac = ilapp_trac * dtvr

* Constraints to be aware of:
dtvr limited by CFL for waves: Cmax.dt < min(dx,dy)
dtrtrac limited by advection CFL: Umax.dt < min(dx,dy)
Iphysiq, dtvrtrac, dissip _period should be multiples of iperiod



Some rules of thumb for run.def parameters

* Constraints to be aware of (continued):

dissipation time step should be much smaller than dissipation
timescales:

dtdiss << tetatgdiv, tetagrot, tetatemp

* Changing time step with resolution on a regular grid:
day_step(max(iim,jjm)=N) ~ day_step(max(iim,jjm)=M) * M/N

* Time step for a zoomed simulation, compared to regular grid:
day step(zoom) ~ day step(regular)*max(grossismx,grossismy)



LMDZ + DYNAMICO

An icosahedral grid...

* Cells are mostly (irregular) hexagons, some pentagons
* No zonal filters => more parallelism
* Makes other things trickier !

.. but a similar “user experience”.

Especially, files are read/written by XIOS which can interpolate
between DYNAMICO and lon-lat mesh. Except for a good
reason, input and output fields are longitude-latitude
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LMDZ + DYNAMICO

An icosahedral grid...

* Cells are mostly (irregular) hexagons, some pentagons
* No zonal filters => more parallelism

* Makes other things trickier !

.. but a similar “user experience”.

Especially, files are read/written by XIOS which can interpolate P y" XXXKE
between DYNAMICO and lon-lat mesh. Except for a good Boeon

:i’-}'é;r MRS

reason, input and output fields are longitude-latitude

Horizontal resolution

* Controlled by a single parameter “nbp”

* 10 x nbp x nbp grid points (atmospheric columns)

* nbp=40 => about 2 degree resolution (dx ~ 220km)

e dx is divided by 2 when nbp doubles

* maximum dynamics time step: dt ~ dx/c , c~400 m/s




LMDZ + DYNAMICO

EEa——
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An icosahedral grid...

* Cells are mostly (irregular) hexagons, some pentagons
* No zonal filters => more parallelism

* Makes other things trickier !

e
=

.. but a similar “user experience”.

Especially, files are read/written by XIOS which can interpolate
between DYNAMICO and lon-lat mesh. Except for a good
reason, input and output fields are longitude-latitude

Horizontal resolution Zoom
* Controlled by a single parameter “nbp” e “polar” zoom via_l Schmidt transform
* 10 x nbp x nbp grid points (atmospheric columns) * soon (?) via variable-resolution meshing

* nbp=40 => about 2 degree resolution (dx ~ 220km) ..
+ dx is divided by 2 when nbp doubles Limited Area-Model
: L _ * metric_type =icosa_area
* maximum dynamics time step: dt ~ dx/c , c~400 m/s « set center (lon, lat) and radius

e dx =radius/nbp
* Needs other parameters, and input files



LMDZ + DYNAMICO

Transport schemes
* Scheme similar to lon-lat Van Leer
* Transport time step can be a small multiple of dynamics time step (itau_adv)

Horizontal dissipation
* (bi-)laplacian, exactly as lon-lat LMDZ
e Coefficients tuned for a certain resolution

Sponge layer

* Relaxation to zero: simple but breaks total angular momentum conservation

* Relaxation to zonal mean: implemented (via XIOS) by expensive...

* Relaxation to temporal mean: implemented (via XIOS), local, so less expensive

Nudging
* implemented

(incomplete) doc of DYNAMICO parameters/flags:
https://gitlab.in2p3.fr/ipsl/projets/dynamico/dynamico/-/blob/master/PARAMETERS.md?ref_type=heads

Search for DYNAMICO on LMDZPedial!:

https://Imdz-forge.Imd.jussieu.fr/mediawiki/LMDZPedia/index.php/Sp%C3%A9cial:Recherche?search=dynamico&fulltext
=Recherche+en+texte+int%C3%A9gral&fulltext=Search


https://gitlab.in2p3.fr/ipsl/projets/dynamico/dynamico/-/blob/master/PARAMETERS.md?ref_type=heads
https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia/index.php/Sp%C3%A9cial:Recherche?search=dynamico&fulltext=Recherche+en+texte+int%C3%A9gral&fulltext=Search
https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia/index.php/Sp%C3%A9cial:Recherche?search=dynamico&fulltext=Recherche+en+texte+int%C3%A9gral&fulltext=Search
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