Model physics part II Convective and large-scale clouds

LMDz Training – January 2024 J-B Madeleine and the LMDZ team

Some useful animations :

- Satellite animation using the SEVIRI instrument : http://pmm.nasa.gov/education/videos/water-vapor-animation
- Animations of updrafts and triggering of deep convection over the mountains of Arizona : https://animations.atmos.uw.edu, 15.1 and 16.5
- Animation of the cloud field in high resolution LMDZ simulations :

https://Imdz.Imd.jussieu.fr/pub/Training/Presentations/LMDZ_animation-highres.mp4

How to visualize clouds in LMDZ

prw (2D) : Precipitable water (kg/m²) pluc/plul (2D) : Convective/Isc rainfall (kg/m²/s) snow (2D) = surface snowfall (kg/m²/s) lwp (2D) : Cloud liquid water path (kg/m²) iwp (2D) : Cloud ice water path (kg/m²)

ovap (3D) : water vapor content (kg/kg) oliq (3D) : cloud liquid water content (kg/kg) ocond (3D) : cloud liq+ice water content (kg/kg)

pr_lsc_l (3D) : lsc rain mass fluxes (kg/m²/s) pr_lsc_i (3D) : lsc snow mass fluxes (kg/m²/s)

rneb (3D) : cloud **fraction** (%) cldh (2D) : High-level cloud **cover** (%) cldm (2D) : Mid-level cloud **cover** (%) cldl (2D) : Low-level cloud **cover** (%) cldt (2D) : Total cloud **cover** (%)

low-level clouds = below 680 hPa or ~3 km mid-level clouds = between 680 and 440 hPa high-level clouds = above 440 hPa or ~6.5 km

DO NOT MIX UP CLOUD FRACTION AND CLOUD COVER ;-)

Convective clouds

For more detail, see Grandpeix et al., 2004 : https://doi.org/10.1256/qj.03.144 as well as Rio et al., 2009 : https://doi.org/10.1029/2008GL036779

Theory

Main variables shown on a skew-T diagram :

Red profile : Environment Green profile : Adiabatic ascent

LCL : Lifted Condensation Level LFC : Level of Free Convection

CIN : Convective INhibition CAPE : Convective Available Potential Energy

$$\begin{array}{l} \mathsf{CAPE} = \int_{z_{LFC}}^{z_{LNB}} g(\frac{T}{T_{env}} - 1) \cdot dz \end{array}$$

Buoyancy (N/kg)

$$E_c = rac{1}{2} \cdot w^2$$
 and therefore :

CAPE =
$$\Delta_{LFC \rightarrow LNB} E_c$$

8

Many processes in one grid cell

Around 8 hours of simulation by a Cloud Resolving Model (CRM) – C. Muller, LMD

Emanuel scheme (1991)

LMDZ framework

Source : Rio et al., 2009

Fundamental process

• Clausius-Clapeyron equation :

1 de _{sat} L	Т	$0^{\circ}\mathrm{C}$	$20^{\circ}\mathrm{C}$
$\frac{1}{e_{\rm sat}} \frac{1}{{\rm d}T} = \frac{1}{R_{\rm vap}T^2}$	e_{sat}	$6.1 \mathrm{hPa}$	23.4 hPa
Saturation mass mixing ratio :	q_{sat}	$3.7~{ m g~kg^{-1}}$	14.4 g kg^{-1}

 $q_{sat}(T,p)\simeq 0.622~\frac{e_{sat}(T)}{p}$, where ${\rm e_{sat}}({\rm T})$ grows exponentially with temperature

• Clouds form when an air parcel is cooled :

Statistical cloud scheme 1/2

Statistical cloud scheme 2/2

The goal of a cloud scheme is therefore to compute q_cⁱⁿ and the cloud fraction based on the different physical parameterizations.

In-cloud condensed water content :

$$q_c^{in} = \frac{q_c}{\alpha_c}$$

17

Shallow convection 1/2

Shallow convection 2/2

Bi-Gaussian distribution of saturation deficit s: $Q(s) = (1 - \alpha_{th})f(s, s_{env}, \sigma_{env}) + \alpha_{th}f(s, s_{th}, \sigma_{th})$

One mode for thermals : $s_{th}^{}$, $\sigma_{th}^{}$ One mode for their environment : $s_{env}^{}$, $\sigma_{env}^{}$

 S_{env} , s_{th} , and α are given by the shallow convection scheme, and the distribution's variances are parameterized following :

$$\sigma_{\rm s,env} = c_{\rm env} \frac{\alpha^{\frac{1}{2}}}{1-\alpha} \left(\overline{s}_{\rm th} - \overline{s}_{\rm env}\right) + b \,\overline{q}_{t_{\rm env}}$$
$$\sigma_{\rm s,th} = c_{\rm th} \,\alpha^{-\frac{1}{2}} \left(\overline{s}_{\rm th} - \overline{s}_{\rm env}\right) + b \,\overline{q}_{t_{\rm th}}$$

q_cⁱⁿ and the cloud fraction can be computed following :

$$q_c^{in} = \int_0^\infty s Q(s) \, ds \quad \alpha_c = \int_0^\infty Q(s) \, ds$$

Deep convection cloud scheme

Large-scale clouds

For more detail, see Madeleine et al. 2020 : https://doi.org/10.1029/2020MS002046 You can also have a look at the data, available at : https://zenodo.org/record/3942031

Architecture of the physical scheme

Procedure / Subsection	Input variables	Other outputs	
	() Updated variables	CAREFUL : clouds are evaporated/sublimated at the beginning of each time step (~15 min), but vapor, droplets and crystals are prognostic variables. In other words, clouds can move but can't last for more than one timesten (meaning that for	
2.1. Evaporation	$\begin{array}{cccc} \theta \ q_v \ q_l \ q_i \\ & \circlearrowleft \ \theta \ q_t \ (q_l = q_i = 0) \end{array}$		
2.2. Local turbulent mixing	θq_t	example, crystals can't grow over multiple timesteps).	
2.3. Deep convection	$\theta q_t ALE ALP$	$q_c^{in,cv} \ P_{l,i}^{cv} \ d heta_{dw}^{cv} \ dq_{t,dw}^{cv}$	
2.4. Deep convection PDF		$lpha_c^{cv}$	
2.5. Cold pools (wakes)	$\theta q_t d heta_{dw}^{cv} d q_{t,dw}^{cv}$	$ALE^{wk} \ ALP^{wk} \ \theta^{wk}_{env} \ q^{wk}_{t,env}$	
2.6. Shallow convection	$\begin{array}{ccc} & & & & & \\ \theta_{env}^{wk} \ q_{t,env}^{wk} \\ & & \\ &$	$(s_{th} \sigma_{th} s_{env} \sigma_{env})^{th} ALE^{th} ALP^{th}$	
2.7. Large-scale condensation	$\theta q_t (s_{th} \sigma_{th} s_{env} \sigma_{env})^{th}$	$q_c^{in,lsc} \; lpha_c^{lsc} \; P_{l,i}^{lsc}$	
$\circlearrowleft \theta q_v q_l q_i$			
2.8. Radiative transfer	$q_c^{in,lsc} \; lpha_c^{lsc} \; q_c^{in,cv} \; lpha_c^{cv}$		
	Ο θ		

Large scale condensation 1/3

Large scale condensation 2/3

Rain/snow is partly evaporated in the grid below (parameter controlling the evaporation rate) :

REEVAPORATION

$$\frac{\partial P}{\partial z} = \beta [1 - q/q_{sat}] \sqrt{P}$$

-40

-30

-20

Temperature (°C)

-10

0

Large scale condensation 3/3

PRECIPITATION

3

- A fraction of the condensate falls as rain (parameters controlling the maximum water content of clouds and the auto-conversion rate)
- For clouds, it corresponds to a sink term written as :

$$\frac{dq_{lw}}{dt} = -\frac{q_{lw}}{\tau_{convers}} \left[1 - e^{-(q_{lw}/clw)^2}\right]$$

 $w_{iw} = \gamma_{iw} w_0$

 $w_0 = 3.29 (\rho q_{iw})^{0.16}$

 $\frac{dq_{iw}}{dt} = \frac{1}{\rho} \frac{\partial}{\partial z} (\rho w_{iw} q_{iw})$

[Heymsfield, 1977; Heymsfield & Donner, 1990]

- Another fraction is converted to snow ; the corresponding sink term for ice clouds depends on the divergence of the ice crystal mass flux :
- This fraction depends on the same temperature function as clouds \rightarrow rain can be created below freezing
- When this occurs, the resulting liquid precipitation is converted to ice.
- When freezing, rain releases latent heat, which can potentially bring the temperature back to above freezing. If this is the case, a small amount of rain remains liquing stay below freezing.

Growth of an ice crystal at the expense of surrounding supercooled water drops [Wallace, 2005]

[[]Kessler 1969, Sundqvist 1988]

Tuning parameters

26

Radiative transfer

Radiative transfer equation :

Solving the radiative transfer equation requires :

- **q**_{rad} to compute the optical depth ;
- Cloud droplet and crystal sizes to compute the optical properties ;
- The cloud fraction α to compute the heating rates in the clear-sky (1- α) and cloudy (α) columns.

$$q_{rad} = q_c^{in, cv} \alpha_c^{cv} + q_c^{in, lsc} \alpha_c^{lsc}$$

$$\alpha_c = \min(\alpha_c^{cv} + \alpha_c^{lsc}, 1)$$

 $\leftarrow \tau_{\lambda}(s_1,s) \rightarrow$

S

Optical properties of liquid clouds

(see O. Boucher's talk)

1000

100

CDNC (cm⁻³)

$$\text{CDNC} = 10^{1.3 + 0.2\log(m_{\text{aer}})}$$

Link cloud droplet number concentration to soluble aerosol mass concentration (Boucher and Lohmann, Tellus, 1995)

O

$$N = \text{CDNC}$$

$$r_{3} = \left(\frac{l \rho_{\text{air}}}{(4/3) \pi \rho_{\text{water}} N}\right)^{1/3}$$

$$r_{e} = \frac{\int r^{3} n(r) dr}{\int r^{2} n(r) dr}$$
Size-dependent computation of cloud optical properties (Fouquart [1988] in the SW, Smith and Shi [1992] in the LW)

Optical properties of ice clouds

Optical properties are computed using Ebert and Curry [1992], based on the computed crystal sizes.

Fig. 5. Cirrus infrared emissivity for $r_e = 20$, 50, and 90 μ m as a function of ice water path. The solid circles represent values computed using the parameterization of *Liou and Wittman* [1979].

Crystal sizes follow r = 0.71T + 61.29 in µm [lacobellis et Somerville 2000] with $r_{min} \sim 10$ µm (tuneable) for T < -81.4°C [Heymsfield et al. 1986]

Radiative forcing

LW radiative forcing

Positive : clouds reduce the LW outgoing radiation

Annual mean : +29 W m⁻²

SW radiative forcing

Negative : clouds reflect the incoming SW radiation

Annual mean : -47 W m⁻²

Net forcing : Cooling

Annual mean : -18 W m⁻²

LW Cloud Radiative Forcing (W m⁻²) - LMDZ6A

-75

