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Overview of course topics
● Grids:

– Horizontal grids in the physics & dynamics
– Vertical discretization

● Time marching:

– Generalities about time marching schemes
– What is used in LMDZ
– Longitudinal polar filter

● Lateral diffusion and sponge layer:

– Energy cascade
– Illustrative example of diffusion
– Sponge layer near model top



  

Grids in LMDZ

Separation between physics and dynamics:

● “dynamics”: solving the GFD equations on the sphere; usually with the assumption of 
a hydrostatic balance and thin layer approximation. Valid for all terrestrial planets.

● “physics”: (planet-specific) local processes, local to individual atmospheric columns. 



  

Horizontal grids in LMDZ
Grid dimensions specified when 
compiling LMDZ:

makelmdz[_fcm] -d iimxjjmxllm ...

In the dynamics:
● Staggered grids: u, v and scalars 

(temperature, tracers) are on different 
meshes

● Global lonxlat grids with redundant 
grid points
- at the poles
- in longitude

In the physics:
● Collocated variables 
● No global lonxlat horizontal grid, 

columns are labelled using a single 
index (from North Pole to South Pole)



  

LMDZ, Z for Zoom

Zoom centred on coordinates :
clon : longitude (degrees)
clat : latitude (degrees)

grossimx/grossimy : zoom factor along
 x/y directions (i.e. lon/lat)
Computed as the ratio of the smallest mesh (I.e. in the zoom), compared to the mesh 
size for a global regular grid with the same total number of points.

dzoomx/dzoomy : fraction of the grid containing the zoomed area: dzoom*360° by
dzoomy*180°



  

LMDZ, Z for Zoom

Zoom centred on coordinates :
clon : longitude (degrees)
clat : latitude (degrees)

grossimx/grossimy : zoom factor along
 x/y directions (i.e. lon/lat)
Computed as the ratio of the smallest mesh (I.e. in the zoom), compared to the mesh 
size for a global regular grid with the same total number of points.

taux/tauy : steepness of the transition between inner zoom and outer zoom meshes 
(typically one tries to avoid sharp transitions; tau ~ 3 is a reasonable value)



  

Nudging in LMDZ

Strong nudging
(t=30min)

Weak to 
moderate
nudging
(t=10 days)

          Nudging towards 
analyses or reanalyses with 
chosen time constants

∂u
∂ t

=
∂u
∂ t GCM

+
uanalyse−u

τ

∂v
∂ t

=
∂v
∂ t GCM

+
vanalyse−v

τ

Example of nudging parameters:
ok_guide = y
guide_T = n , guide_p = n , guide_q = n
guide_u = y , guide_v = y
tau_min_u = 0.0208333 (days)
tau_max_u = 10 (days)
tau_min_v = 0.0208333 (days)
tau_max_v = 10 (days)

(nudge = “guide” 
in French)



  

● Model levels are hybrid sigma-pressure levels:

P(level,time) = ap(level) + bp(level) . Ps (time)

hybrid coordinates ap(k) and bp(k) are fixed for a given model run

Surface pressure Ps(t) varies during the run
● Near the surface ap ~ 0

=> bp(k) ~ P/Ps

● At high altitudes , bp ~ 0

=> ap(k) ~ P

Vertical discretization in LMDZ



  

Vertical discretization in LMDZ
● Setting model levels via the def files (also a function of number of vertical levels) :

vert_sampling = strato_custom : customable (via other parameters in .def file; see 
next slide) discretization for stratospheric extensions.

Multiple other possibilities from this “default”: 

vert_sampling = strato : a default for stratospheric extensions

vert_sampling = sigma : automated generation of purely sigma levels

vert_sampling = param : load values from a “sigma.def” file 

vert_sampling = tropo : a default  for tropospheric simulations

vert_sampling = read : read ap() and bp() from file “hybrid.txt”

=> Typically you don't need to mess with the vertical discretization,

the default behaviour most likely matches your needs.

=> Check out routine dyn3d_common/disvert.F90



  

Vertical discretization in LMDZ
Illustration of typical altitudes and layer thickness of L19/L39/L79/L95 grids

“Standard” CMIP6 
 L79 settings
(see DefLists/vert_L79.def)

vert_sampling=strato_custom

vert_scale=7.
vert_dzmin=0.017
vert_dzlow=1.
vert_z0low=8.7
vert_dzmid=2.
vert_z0mid=70.
vert_h_mid=20.
vert_dzhig=11.
vert_z0hig=75.
vert_h_hig=20.

Over the whole atmosphere
0 < z < ~80 km

Near the surface
0 < z < 3 km



Questions ?



  

● The big picture: you want to solve 

from a known initial condition at time t=0 to time t=...
● So it is all about using a time marching scheme, built on Taylor 

expansion for evaluation of the time derivative, and choosing at 
which time level t=n.δt the right hand side term R[f(t),t] is to be 
evaluated :

Time marching schemes



  

● Explicit Euler scheme (1st order in time): 

● Implicit Euler scheme (1st order in time):

● Crank-Nicholson scheme (2nd order in time):

Time marching schemes



  

● Matsuno scheme: a predictor-corrector (Euler explicit-Euler Implicit) 
scheme (1st order):

● Leapfrog scheme: use encompassing time steps to evaluate the 
derivative (2nd order):

Time marching schemes



  

● Illustrative example, on a decay equation (known solution!) 

● Building Euler explicit (E) & implicit (I) schemes:

Time marching schemes

(E.E.) (E.I.)



  

● Illustrative example, on a decay equation 

● Resulting integration schemes:

● Stability requirement (CFL) for EE : dt/tau < 2

Time marching schemes



  

Time marching schemes

● 4 integration steps per unit of t/tau



  

Time marching schemes

● 8 integration steps per unit of t/tau



  

Time marching schemes

● 8 integration steps per unit of t/tau



  

Time splitting between physics/dynamics/dissipation:

Time marching in LMDZ

● Dynamics : Leapfrog-Matsuno scheme

    Using day_step dynamical steps per day

Leapfrog steps with a Mastuno step every iperiod step
● Physics : Explicit Euler

Every iphysiq dynamical steps (multiple of iperiod)
● Dissipation: Explicit Euler

Every dissip_period dynamical steps (multiple of iperiod)



  

Even when solving linear spatio-temporal boundary-value 
problems, e.g.:

Side note about explicit or 
implicit time marching schemes

The explicit Euler approach leads to a straightforward expression 
for grid point values (but with stability constraints) :

Whereas the implicit Euler approach leads to a 
(tridiagonal) system of equations to solve:

=> requires more computations, but may be necessary if 
time-stepping constrains require using large time steps.



  

When needing to solve a tridiagonal system of the form:

T.x=y , T tridiagonal matrix, x & y vectors

Rather than invert T (costly!) to generate T-1 (dense matrix) and then compute 
x=T-1.y (matrix-vector product)

Use the LU decomposition (Gaussian elimination) of T to split the problem into 
two very simple sub-problems:

1) L.U=T , L and U are bidiagonal (lower/upper) matrices

2) Solve L.z=y for vector z (forward substitution step)

3) Solve U.x=z for vector x (backward substitution step)

Side note about tridiagonal 
system solving



● CFL requirement, for an advection velocity Umax :
Umax.(dt/dx) = cte , with cte ~ 0(1)

Scheme I by Van Leer (1977)

x

c

ρvcδt

Centered finite differences (second order)

x

c

ρvc

ii-1 i+1
Upwind first order scheme (Godunov, 1952)

x

c

ρvcδt

ii-1 i+1

ii-1 i+1

Use of the Van Leer I scheme (1977), a 
second order finite volume scheme with 
slope limiters (e.g. MUSCL, MINMOD)  
(Hourdin et Armengaud, 1999).

Guaranties of fundamental physical 
properties of transport :
conservation of the total quantity, 
positivity, monotony, non amplification 
of extrema, weak numerical diffusion

Tracer advection in LMDZ



Tracer advection in LMDZ
● In practice: Tracer names and various properties are set in the 

tracer.def file. e.g.:
&version=1.0
&lmdz
default type=tracer phases=g hadv=10 vadv=10 parent=air
H2O phases=g hadv=14 vadv=14
H2O phases=l havd=10 vadv=10
H2O phases=s hadv=10 vadv=10
Rn
Pb

● Scheme “10” : Van Leer scheme
● Scheme “14” : Dedicated modified scheme for water vapor
● Other (experimental) schemes are coded; see dyn3d/advtrac.F90



Tracer advection in LMDZ
● In practice: Tracer names and various properties are set in the 

tracer.def file. e.g.:
&version=1.0
&lmdz
default type=tracer phases=g hadv=10 vadv=10 parent=air
H2O phases=g hadv=14 vadv=14
H2O phases=l havd=10 vadv=10
H2O phases=s hadv=10 vadv=10
Rn
Pb

● phases: gas/liquid/solid for a given tracer
● parent: air or another tracer (for isotopes)+ possibility of “tagging”

see https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia 

https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia


Questions ?



  

The longitudinal polar filter
● A lon-lat grid implies that the meshes 

tighten dramatically as the pole is 
approached.

● CFL conditions there would dictate 
using an extremely small time step 
for the time marching scheme.

● Longitudinal (Fourier) filtering, removing high spatial frequencies, is used to enforce 
that resolved features are at the level of those at ~60° (where longitudinal resolution is 
half of that at the equator).

● In addition near the poles there is some longitudinal grouping of meshes (applied to 
the divergence of air transport) by bunches of 2ngroup (typically ngroup=3) which implies 
that the number of points along longitudes of the GCM must be a multiple of 2ngroup!



  

 Energy spectra and lateral 
dissipation

● In order to fulfil the observed energy cascade from resolved 
scales to unresolved scales in GCMs, a dissipation term is 
added:

● Observations (Nastrom & Gage 1985, 
Lindborg 1999) collected over length 
scales from a few to thousands of km 
display a characteristic energy cascade 
(from Skamarock, 2004).



  

Lateral dissipation in GCMs 
as a tool to pin the energy 
cascade

Figures from Numerical Techniques for Global Atmospheric Models, 
Lauritzen et al. (eds), 2010



  

Illustrative example of dissipation
● Simple 1D diffusion equation toy model:

● Von Neumann (Fourier mode) analysis

● Explicit Euler time marching (with stability condition!):

Note that mode damping is stronger for large k



  

Illustrative example of dissipation

Temporal evolution, from an initial condition consisting of 2 sine 
modes and an extreme (2 grid points wavelength) “numerical mode”



  

Controlling dissipation in LMDZ
● Parameters in file gcm.def:

dissip_period: Apply dissipation every dissip_period dynamical steps (or 
specify 0 to let model pick an appropriate value)

nitergdiv: number of iterations on velocity dissipation operator grad.div

nitergrot: number of iterations on velocity dissipation operator grad.rot

niterh: number of iterations on temperature dissipation operator div.grad

Usual values: nitergdiv=1, nitergrot=2, niterh=2

tetagdiv: dissipation time scale (s) for smallest wavelength for u,v (grad.div 
component)

tetagrot: dissipation time scale (s) for smallest wavelength for u,v (grad.rot 
component)

tetatemp: dissipation time scale (s) for smallest wavelength for potential 
temperature (div.grad)

values depend on horizontal resolution



  

Controlling dissipation in LMDZ
● Parameters in file gcm.def:

tetagdiv: dissipation time scale (s) for smallest wavelength for u,v 
(grad.div component)

tetagrot: dissipation time scale (s) for smallest wavelength for u,v 
(grad.rot component)

tetatemp: dissipation time scale (s) for smallest wavelength for 
potential temperature (div.grad)

optimal teta values depend on horizontal resolution
● Moreover there is a multiplicative factor for the dissipation 

coefficient, which increases with model levels (see 
dyn3d_common/inidissip.F90), which can be controlled by flag 
“vert_prof_dissip”



  

● In addition to lateral dissipation, it is necessary to damp vertically 
propagating waves (non-physically reflected downward from model 
top).

● The sponge layer is limited to topmost layers (usually 4) and added 
during the dissipation step.

● Sponge modes and parameters (gcm.def):

iflag_top_bound: 0 for no sponge, 1 for sponge over 4 topmost 
layers, 2 for sponge from top to 100 times topmost layer pressure

mode_top_bound: 0 for no relaxation, 1 to relax u,v to zero, 2 to 
relax u,v to their zonal mean, 3 to relax u,v and potential temperature 
to their zonal mean.

tau_top_bound: inverse of characteristic time scale at the topmost 
layer (halved at each successive descending layer)

The sponge layer



  

● Check out the various examples of gcm.def_* files located in 
the LMDZ/DefLists subdirectory

● Some examples of specific cases of Zoomed simulation setups 
are detailed in a collaborative document; get the link by 
searching “Zoom collection” on LMDZPedia : 
 https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia 

Where to get typical values
of the run.def/gcm.def parameters

https://lmdz-forge.lmd.jussieu.fr/mediawiki/LMDZPedia


  

Some rules of thumb for run.def parameters

● Time steps in LMDZ:
dynamical time steps: dtvr = daysec / day_step

physics time step: dtphys = iphysiq * dtvr

dissipation time step: dtdiss = dissip_period * dtvr

tracer advection time step: dtvrtrac = iapp_trac * dtvr

●  Constraints to be aware of:
dtvr limited by CFL for waves: Cmax.dt < min(dx,dy)

dtrtrac limited by advection CFL: Umax.dt < min(dx,dy)

iphysiq, dtvrtrac, dissip_period should be multiples of iperiod



  

● Constraints to be aware of (continued):
dissipation time step should be much smaller than dissipation 
timescales:

dtdiss << tetatgdiv, tetagrot, tetatemp

● Changing time step with resolution on a regular grid:

day_step(max(iim,jjm)=N) ~ day_step(max(iim,jjm)=M) * M/N

● Time step for a zoomed simulation, compared to regular grid:

day_step(zoom) ~ day_step(regular)*max(grossismx,grossismy)

Some rules of thumb for run.def parameters
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