The surface-atmosphere interactions




COUPLING BETWEEN ATMOSPHERE AND SURFACE Processes involved

Latent heat for the surface

Photo by: Jay Chapman [ Flickr

The atmosphere and the surface are coupled through turbulence (in boundary layer) and radiatic
(SW and LW).

Surfaces impact atmosphere via orography, roughness, albedo, emissivity




Atmosphere-surface interactions in IPSL-CM

In LMDZ (and in IPSL-CM):
Each surface grid can be decomposed in a maximum of 4 sub-grid of different type:
land (_ter), continental ice (_lic), open ocean (_oce) and sea_ice (_sic)

Radiation at the surface depends on mean surface properties (albedo, emissivity)

Turbulent diffusion depends on local sub-grid properties but each sub-surface sees the same
atmosphere
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TURBULENCE

Change of a variable X with the time due to the turbulent transport
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In the boundary layer: | = f(TKE) - Mellor Yamada in LMDZ
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Turbulent diffusion (pbl_surface, LMDZ)
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Turbulent diffusion (pbl_surface, LMDZ)
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Tri-diagonal system that can be solved for the vector X= Enthalpy, specific humidity, wind...




Solving the tridiagonal system
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which may be written as:

(6P, + R+ RY) Xy =08, X))+ Ry X + RN Xy [(2< 1 < n)
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With F7* : flux of X at the bottom of the first layer (i.e. between the surface
and the atmosphere), positive downward.
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Solving the tridiagonal system

Starting from top:
(6Pn - Rf) X,=0P, X"+ R X,_,

can be written as:
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interfaces

Solving the tridiagonal system
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Solving the tridiagonal system
At the bottom of the boundary layer X, = (' + D3 X
(6P + Ry ) X, = 6P X{ + Ry Xo — gotF}*

replacing X5 in the equation above:
X, =C3 +D3X,

X, = A} + B F;t ot

with
JY?:}_FI + H;‘ CQ}-
0P + Ry (1 — DY)

B} = - = _
' 8P + R (1 — D)

AN
Al =

|:1u = pvcd,m (ul 'uo)
u, =A; +B,F" ot



Solving the tridiagonal system
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X= wind, enthalpie, specific humidity, tracers

Once F* (flux of water mass, heat between the surface and the atmosphere )
is known, the X, , the Flux and the tendencies can be computed from the first layer to the top of the PBL



Atmosphere-surface interactions in IPSL-CM

Turbulent diffusion




Forcing
Radiation = LW + LWy, +SW, +SW 4,

Passive response (depends only on T;)
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e Heat conduction : Diffusion equation Ca_T _ 9 (Ka_T
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e Heat conduction : Diffusion equation

We obtain by recurrence (same as for atmosphere) oT 1
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* Top: Continuity between sub-surface and atmosphere + vertical discretization
@, = Rad + ¥, F(T$) — e0(T$)*
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* Top: Continuity between sub-surface and atmosphere
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Case of the continental surface
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 Top boundary condition:
Continuity of the fluxes and the temperature between sub-surface and atmosphere

t_70
C*=5 = G o SWog + LW, + X FH(TS) — eo (T’

Solved using the sensitivity of the flux to the surface temperature to calculate the
flux at the new time-step

‘F:{,H = sensflog — SEHS_]FES-,H{HT‘E - r:—ﬁt}

pt—dtd t—8t3 et pt—dt
g1, —dsoT, (77 -T.7"")
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Coupling between atmospheric column(s) and sub-surfaces

Each grid cell is divided into several sub-areas or ~sub-surfaces" of fractions «w;

Sub-surfaces Turbulent Radiative
flux flux
Z w; = 1 One PBL over each One column
i sub-surface covers all the sub-
surface

W ,(11 / w_,x

Each sub surface has to compute F, using variables X,, A, and B,
The boundary layer tendencies in the atmosphere are mixed between
sub-columns (equivalent of averaging the surface flux)



Derivation of local sub-surface net solar
radiation from grid average net solar
radiation

The grid average net flux ¥, at surface has been computed for each grid point by the radiative code

We want (1) to conserve energy and (2) to take into account the value of the local albedo ai
of the sub-surface.

We compute the downward SW radiation as

with the mean albedo o= Z Wi
i

For each sub-surface i, the absorbed solar radiation reads:

ol
One may verify that this procedure ensure energy conservation, i.e. E :'W’-z R
i



Derivation of local sub-surface net longwave
radiation from grid average net longwave radiation

The net longwave (LW) radiation U* has been computed by the radiative code for each grid
cell. How to split it depending on the sub-surfaces local properties and ensuring energy
conservation?’

If the downward longwave flux F| is uniform within each grid, the net LW flux for a
sub-surface ¢ may be written as:

V(T = e (F) = oT}) (1)

2

where 7; is the surface temperature of sub-surface ¢ and ¢; its emissivity. A linearization
around the mean temperature 1" gives:

V) =~ e (£ - UTLL) —4e,0T(T; = T) (2)

)

To conserve the energy. the following relationship must be true:
Sk =0 (3)
i
Using Eq. 2 gives
Z w@t_;[‘ —€ (Fl — JT4) — 407T° Z W;€; (:ﬂ — T) (4)

where € = > . w;€; is the mean emissity.



Derivation of local sub-surface net longwave radiation
from grid average net longwave radiation

§ wphy =€ (F) —oT?) —4JT‘3§ wie; (T; = T) (4)
where € = ) . w;e; is the mean emissity. The second term on the right hand side is zero if
T — Zi w;€; 1; (5)

€

To ensure energy conservation, we need in addition to verify:

Which is consistent with the definition of the net LW flux at the surface. We rewrite now
Eq. 2 as:

LTy =~ E—f\IJL — de;oTHT, = 1T) (7)
e

W

Due to radiative code limitation, in LMDZ, we always must have ¢ = 1
Energy conservation: the radiation is computed by the atmospheric model,



Amazonie Sahel
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Atmosphere/surface coupling in LMDZOR

LMDZ (phylmd)

pbl_surface

Planetary boundary
( Aq ’ Bq, AH ’ BB, th,' Au ? Bu, Av ’ Bv ’ th' Tl# ql, ullvl,, Lwnet, LWdown, Swnet )

layer
AcoefH, AcoefQ, BcoefH, BcoefQ cdragh,lwdown,swnet
and surface modules Q Q &
' (is_ter, ok veget=n)
surf_land_bucket (is_ter, ok_veget =y )
(soil.F90: soil T, heat capacity, conduction, surf_land_orchidee

calcul_flux : sens,flat,tsurf_new
Hydro= water budget (snow, precip, Evap)




Atmosphere/surface coupling in LMDZOR

LMDZ (phylmd)
pbl_surface

( Aq ’ Bq, AH ’ BB, th,' Au ’ Bu, Av ? Bv ’ cdh' Tl' ql, ul'vl,, I'\Nnet, Lwdownh SWnet )
AcoefH, AcoefQ, BcoefH, BcoefQ cdragh,lwdown,swnet

Planetary boundary
layer
and surface modules

2

(is_ter, ok _veget=vy)
surf_land_orchidee

I'den' SWnet' I'Wnet' Tll ql’ Cdragh' ullvl
A,, B, A,, By, rain, snow)

fluxsens, fluxlat, albedo, &, tsurf_new, z0

intersurf ORCHIDEE (sechiba)

petA orc,petB_orc,pegA_orc,peqB_orc,swet, swnet,lwdown, cdrag

Water and
Energy budget diffuco (z0, albedo, emissivity )
(surface and enerbil fluxsens fluxlat, tsurf_new
soil) thermosoil G, ztsol

Hydrol: hydrology — diffusion scheme




Atmosphere/surface coupling in LMDZOR
LMDZ (phylmd)

pbl_surface

Planetary boundar
¥ Y (Ay.B, Ay, By Cans Ay, By A, B, , Can Ty, 0y Upvy LW, LW, SWoe)
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and surface modules
' (is_ter, ok veget=n)
surf_land_bucket (is_ter, ok_veget =y )
(soil.F90: soil T, heat capacity, conduction, surf_land_orchidee

calcul_flux : sens,flat,tsurf_new
Hydro= water budget (snow, precip, Evap)

I'den' SWnet' I'Wnetl T1' ql' Cdragh' ul'vl
A, , B, Ay, By rain, snow)

fluxsens, fluxlat, albedo, &, tsurf_new, z0

intersurf ORCHIDEE (sechiba)

petA orc,petB_orc,pegA_orc,peqB_orc,swet, swnet,lwdown, cdrag

Water and
Energy budget diffuco (z0, albedo, emissivity )
(surface and enerbil fluxsens fluxlat, tsurf_new
soil) thermosoil G, ztsol

Hydrol: hydrology — diffusion scheme




In subroutine PHYSIQ

loop over time steps Call tree
CALL change_srf _frac : Update fraction of the sub-surfaces (pctsrf)

CALL pbl_surface Main subroutine for the interface with surface

Calculate net radiation at sub-surface

Loop over the sub-surfaces nsrf
Compress variables (Consider only one surface type and only the points for
which the fraction for this sub-surface in not zero)
CALL cdrag: coefficients for turbulent diffusion at surface (cdragh and cdragm)
CALL coef_diff_turb: coef. turbulent dif. in the atmosphere (ycoefm et ycoefm.)
CALL climb_hg_down downhill for enthalpy H and humidity Q
CALL climb_wind_down downhill for wind (U and V)
CALL surface models for the various surface types: surf land, :

or :

Each surface model computes:
 evaporation, latent heat flux, sensible heat flux, momentum
* surface temperature, albedo (emissivity), roughness lengths
CALL climb_hqg_up : compute new values of enthalpy H and humidity Q
CALL climb_wind_up : compute new values of wind (U and V)
Uncompress variables : (some variables are per unit of sub-surface fraction,
some are per unit of grid surface fraction)
Cumulate in global variables after weighting by sub-surface fractions
Surface diagnostics : (T, g, wind are evaluated at a reference level (2m)
owing to an interpolation scheme based on the MO laws).

End Loop over the sub-surfaces

Calculate the mean values over all sub-surfaces for some variables

End pbl-surface



Technical note : Description of the interface with the surface and the computation
of the turbulent diffusion in LMDZ (J.L.Dufresne)

These F. Hourdin 1993 (section 3.3.3 and annexes)

Wang F., F. Cheruy, J.L. Dufresne, 2016: The improvement of soil
thermodynamics and its effects on land surface meteorology in the IPSL climate
model. Geosci. Model Dev., 9, 363-381, 2016 www.geosci-model-
dev.net/9/363/2016/
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Case of the continental surface
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Surface energy budget:
Case of the continental surface SW o+ LW +F+ 1L+ (Dl =0
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In LMDZ
climb_hg_down
and
climb_wind down

Atto,and B, dependon T, at
the previoustime stepand on
the underlying layers:

They can be pre-computed

ORCHIDEE (thermosoil)

Continental case

t-1

Downhill

t
A
|+1— _
A """',Tf"xl'l
@
X w T T TTT T T
B r_
________ Ky _

M
=0 = O
2
X, = 4 + B(F)a

Hourdin 1993



