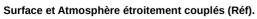
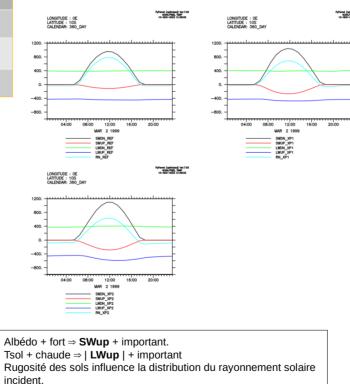
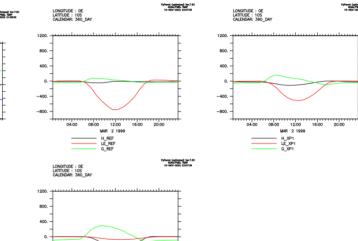
Étude de la sensibilité à l'albédo et à la rugosité du sol : Simulation d'une déforestation de l'Amazonie




	Référence	xp1	xp2
albédo	0.12	0.26	0.26
rugosité	1.8	0.01	0.01
gsolinp	50	50	5



Sol plus sec sol (xp2) ⇒

- Augmentation de la température moyenne
- Amplitude thermique diurne plus importante - Tsol plus chaud que T2m le jour, plus froid la nuit

Forêt d'Amazone

Rugosité des sols influence la distribution du rayonnement solaire incident.

Rn ~ négatif la nuit (refroidissement radiatif de surface domine | LWup | >~ LWdn; SWup = SWdn = 0), et largement positif la journée (fort réchauffement de la surface par le Soleil).

- Flux de chaleur sensible **H** augmente guand | T2m Tsol | augmente.
- Flux de chaleur latente **LE** + important pour un sol humide et pour une rugosité de surface élevée :

Le flux de chaleur latente dépend beaucoup de la turbulence de friction qui dépend étroitement de la rugosité du sol.

- Flux conductif du sol G:

Jour : positif et important quand Tsol élevée → transfert de chaleur de la surface surchauffée vers les profondeurs.

Nuit: l'inverse.