Tropical Cyclones in the IPSL HighResMIP simulations

Stella Bourdin, Sébastien Fromang (LSCE/IPSL) Réunion Pédalons LMDZ – 6 Juillet 2021

Context

Original Image from twinkl.com

Are there tropical cyclones (TC) in the IPSL model's simulations?

If yes, how well are they represented and what is the impact of resolution?

1997-08-02 0 hours

Animation of one « strong » TC in the 50km **IPSL-CM7A** HighResMIP simulation

- 10

- 5

- 1010

- 1000

- 990

- 980

-970

1997-08-02 0 hours

Animation of one « strong » TC in the 50km **IPSL-CM7A** HighResMIP simulation

Sea-level Pressure / hPa

- 1010

-1000

- 990

-980

-970

TC detection algorithm : UZ

- UZ = Ullrich & Zarzycki (2021)
- Implemented in the TempestExtremes framework

Detect candidate points

Tracks a local slp minimum associated with a warm core (geopotential thickness)

Stitch candidate points

- Path must last at least 56h
- **Storm must form between 10 and 40° latitude**, in a region with a topographic height < 10m
- Surface wind must reach 10 m/s

Tracker performance on ERA5

Tropical cyclones tracked in ERA5 on the 1980-2020 period, and compared to the IBTrACS database

Identification scores

Algo	$\begin{array}{l} \text{Missing} \\ \text{SSHS} \geq 0 \ / \ 1 \end{array}$	False Alarms All/sshs>=0	
UZ	29% / 11%	7% / 4%	
OWZ	30% / 11%	17% / 5%	
TRACK	27% / 15%	36% / 35%	

Choice of the UZ algorithm because of good performance on ERA5 + uses variables available for IPSL-CM6A simulations

The HighResMIP Framework

• Atmosphere-only global simulations with forced SST over 65 historical years (1950-2014)

Name	Physics	Dynamics	Resolution at equator	
			LR	HR
IPSL-CM6A-ATM	LMDz	LMDz	278 km	78 km
IPSL-CM7A-ATM		Dynamico	179 km	45 km

• UZ algorithm applied to the 4 simulations

Impact of resolution

Impact of resolution

Data from other models obtained in Roberts 2020b with the same detection method.

Roberts 2020b

Spatial distribution

Obs

-0.125

-0.250

-0.750

-1.250

-1.00 -0.25 0.25 1.00 Storm transit anomaly

Conclusion

- Great improvement with increasing resolution, the IPSL model compares with other similar models;
- Global frequency at 50km similar to obs and reanalyses
- The IPSL model generates too much TC in some basins, but they do not intensify enough.