

Un développeur de param qui découvre le tuning

Étienne Vignon, pour l'atelier « TKE »

(Khadija Arjdal, Maëlle Coulon-Decorzens, Frédérique Chéruy, Clément Dehondt, Thomas Dubos, Sébastien Fromang, Frédéric Hourdin, Lucas Lange, Lea Raillard, Gwendal Rivière, Adriana Sima, Aymeric Spiga, Pierre Tiengou, Étienne Vignon) + help by Romain Roehrig

PEDALONS, janvier 2024

Un développeur de param parmi d'autres : Atelier d'autoformation sur le mélange turbulent (2023)

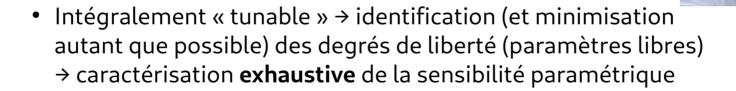
Comment paramétrer le mélange local (diffusion) d'une quantité c par turbulence ?

$$\overline{\rho w'c'} = -\rho \underline{K_c} \partial_z c \qquad ?$$

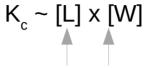
Pour apprendre, quoi de mieux que développer notre propre paramétrisation du K_c?

Nouvelle paramétrisation du coefficient de diffusion turbulente

- Aussi « maison » que possible (limiter l'utilisation de résultats empiriques venant d'autres papiers) → approche heuristique assumée
- Bonnes propriétés numériques (convergence, stabilité)
- Applicable sur Terre ET Mars



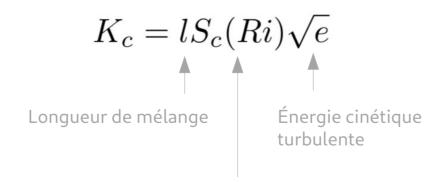
Nouvelle paramétrisation du coefficient de diffusion turbulente



Longueur caractéristique du mélange Vitesse verticale caractéristique du

Vitesse verticale caractéristique du mélange turbulent

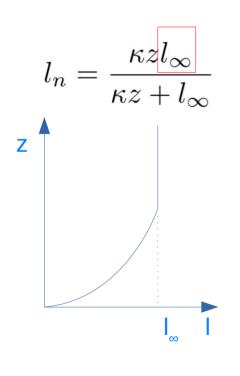
Choix d'un schéma TKE-l

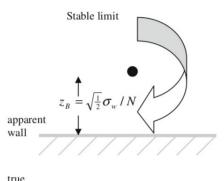


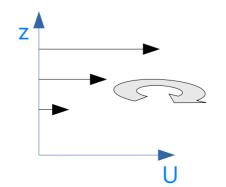
Fonction de stabilité (du nombre de Richardson Ri) qui « corrige de l'anisotropie de la turbulence avec la stabilité »

Adaptation de la longueur de mélange pour les couches limites stables

→ sensibilité à la stabilité et au cisaillement de vent

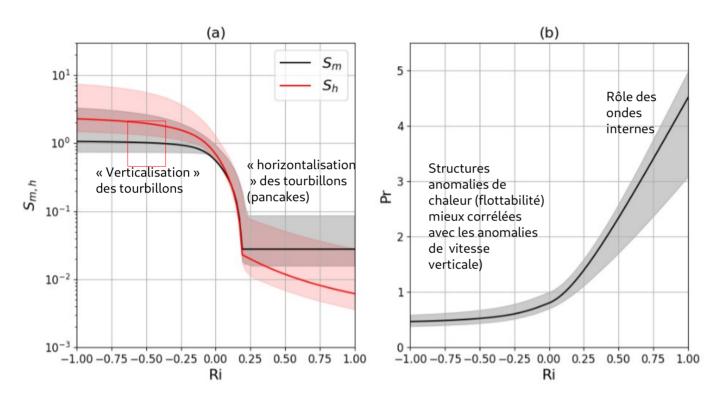






$$l_s = c_l \frac{\sqrt{e}}{2|S|(1+\sqrt{Ri}/2)}$$

Grisogono & Belušić (2008)



$$Pr = \frac{K_m}{K_h} = \frac{S_m}{S_h}$$

$$S_m(Ri) = \begin{cases} c_n + \frac{2}{\pi}(c_\infty - c_n)\arctan(\frac{-Ri}{Ri_0}) & \text{if Ri } < 0\\ \max\left(c_n(1 - \frac{Ri}{Ri_c}), S_{min}\right) & \text{if Ri } \ge 0 \end{cases} \qquad Pr(Ri) = \begin{cases} Pr_n - \frac{2}{\pi}(Pr_\infty - Pr_n)\arctan(\frac{-Ri}{Ri_1}) & \text{if Ri } < 0\\ Pr_n e^{\frac{1-\alpha_{Pr}}{Pr_n}Ri} + \alpha_{Pr}Ri & \text{if Ri } \ge 0 \end{cases}$$

Deuxième essai TKE-l avec résolution de l'équation d'évolution de la TKE

$$\frac{\partial e}{\partial t} = \underbrace{-\overline{u'w'}\frac{\partial u}{\partial z} - \overline{v'w'}\frac{\partial v}{\partial z}}_{\mathcal{W}} + \underbrace{\overline{b'w'}}_{\mathcal{B}} \underbrace{-\frac{1}{\rho}\frac{\partial}{\partial z}(\overline{\rho w'e} + \overline{w'p'})}_{\mathcal{T}} \underbrace{-\epsilon}_{\mathcal{D}} \qquad \epsilon = \frac{e^{3/2}}{l_{\epsilon}}$$

$$l_{\epsilon} = c_{\epsilon}l,$$

TKE=q²/2 puis résolution implicite

$$\frac{q_{t+\delta t} - q_t}{\delta t} = \frac{lS_m}{\sqrt{2}} S^2 \left(1 - \frac{Ri}{Pr} \right) - \frac{q_{t+\delta t}^2}{2^{3/2} c_{\epsilon} l}$$

 $q_{t+\delta t}^2 + A_t q_{t+\delta t} + B_t = 0$

8

C'est parti on teste! Oui mais avec quel jeu de paramètres libres?

Liste **exhaustive** des 10 paramètres libres :

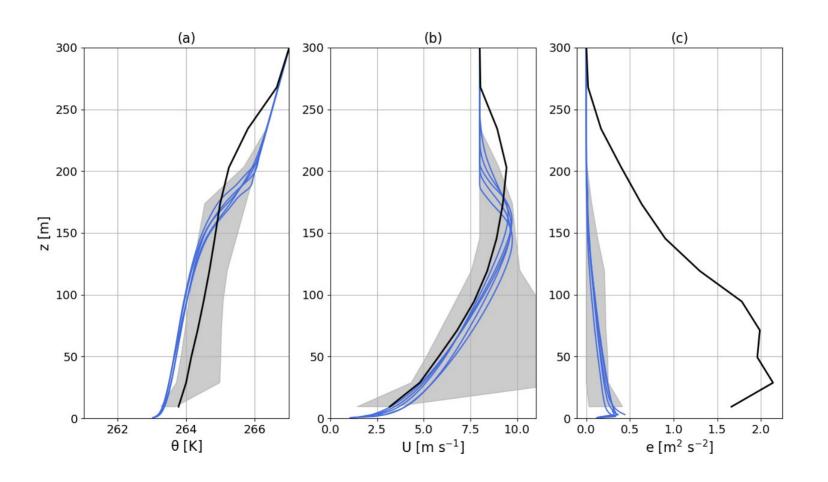
Table 1. Name, units, definition and range of acceptable values for the adjustable parameters. Parameters in bold are those which affect the simulation of the neutral and stable boundary layer.

Name	Units	Definition	Range
\mathbf{c}_{ϵ}	[-]	controls the value of the dissipation length scale	[1.2 - 10]
$\mathbf{c_e}$	[-]	controls the value of the diffusion coefficient of TKE	[1 - 5]
\mathbf{l}_{∞}	[m]	asymptotic mixing length far from the ground	[15 - 75]
$\mathbf{c_l}$	[-]	controls the value of the mixing length in stratified conditions	[0.1 - 2]
$\mathrm{Ri}_{\mathbf{c}}$	[-]	critical Richardson number controlling the slope of S_m in stable conditions	[0.19 - 0.25]
$\mathbf{S_{min}}$	[-]	minimum value of S_m in very stable conditions	[0.025 - 0.1]
$\mathbf{Pr_n}$	[-]	neutral value of the Prandtl number	[0.7 - 1]
$\alpha_{\mathbf{Pr}}$	[-]	linear slope of Pr with Ri in the very stable regime	[3 - 5]
rc_{∞}	[-]	ratio between c_{∞} and c_n controlling the convective limit of S_m	[1.2 - 5.0]
Pr_{∞}	[-]	value of Pr in the convective limit	[0.3 - 0.5]

Mais cohérence avec le schéma de surface

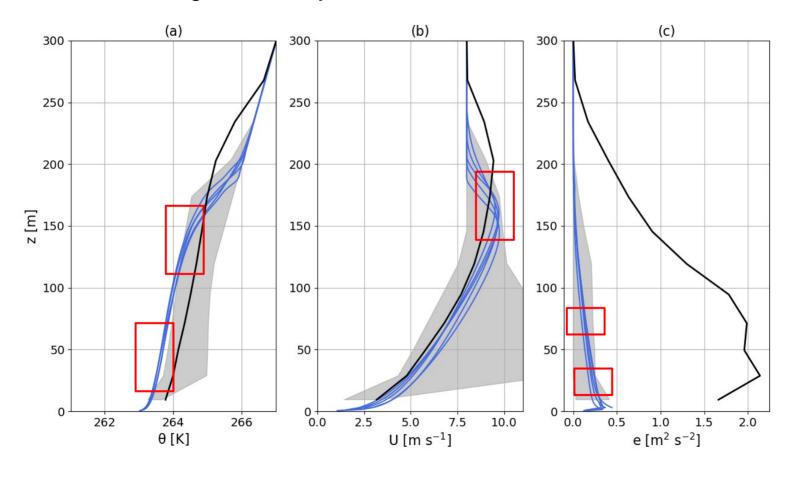
[→] ces paramètres contrôlent aussi les flux de surface

→ HighTune explorer pour explorer la sensibilité paramétrique

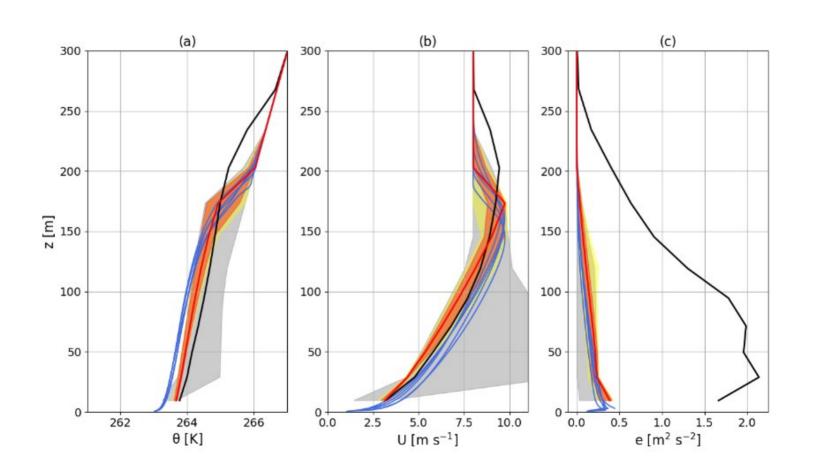


→ HighTune explorer pour explorer la sensibilité paramétrique

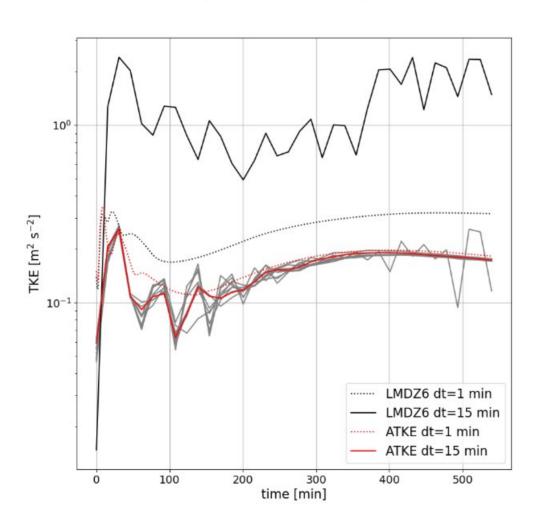
→ tuning sur 4 métriques

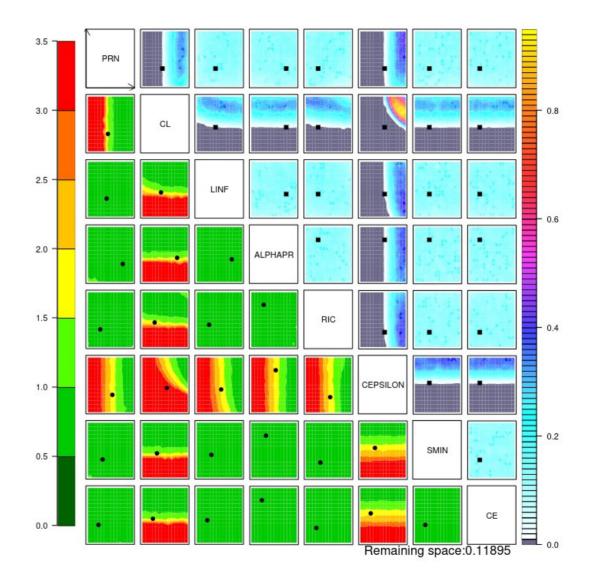


Après history matching avec 4 métriques sur GABLS1 1, 3 et 20 vagues



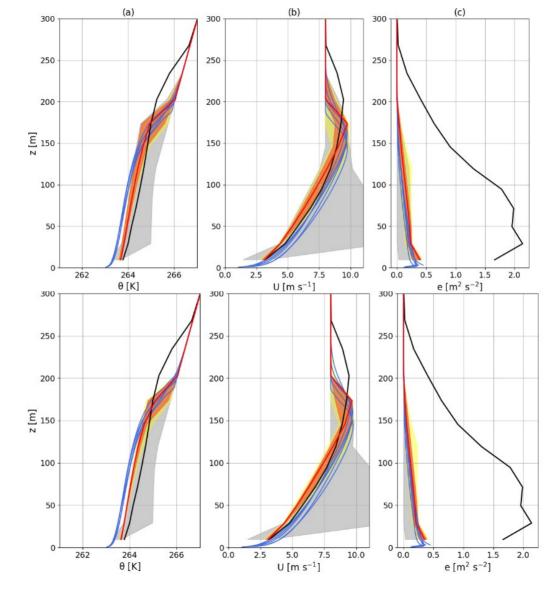
Propriétés numériques





NROY space après 20 vagues Tuning initial sur 8 paramètres

Tuning sur 3 paramètres les plus influents

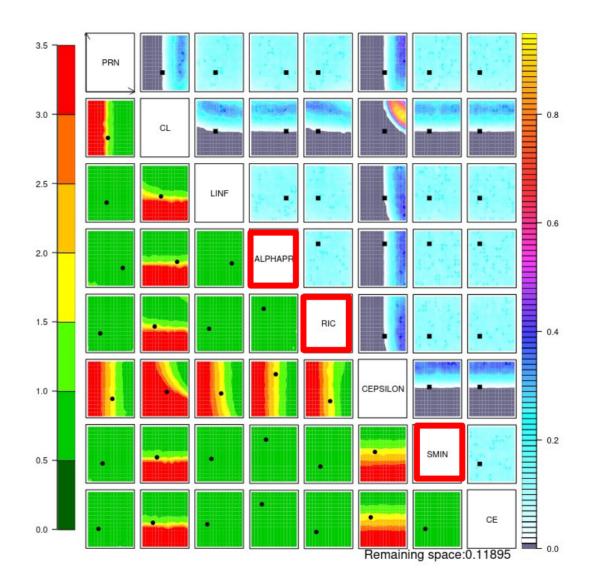


Paramètres qui

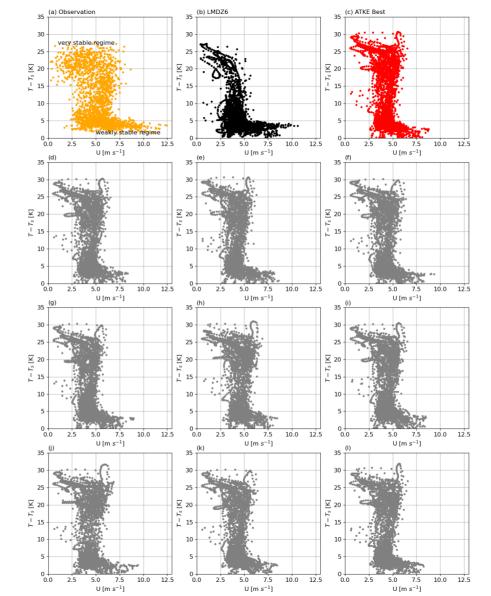
influent sur couches limites très stables

Mais tuning délicat car LES convergent difficilement sur ces cas

+ résolution verticale du modèle devient limitante



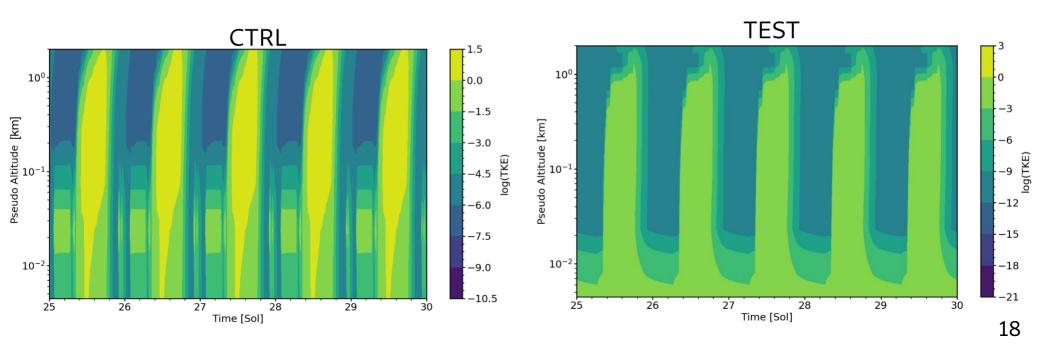
Capacité du nouveau schéma à faire les forts découplages sur le Plateau Antarctique (aspect que l'on ne veut pas perdre de la physique CMIP6)



Trop motivé pour l'implémenter dans le Mars Planetary Climate Model

→ pas de paramètres internes à la param (ou à des modules utilisés) propres à la Terre → arguments d'entrée (ex. gravité)
 → Comment tuner sur Mars ? (pas de 1D « à la DEPHY »,
 LES, Observations InSight) ?

Lucas Lange, équipe planéto

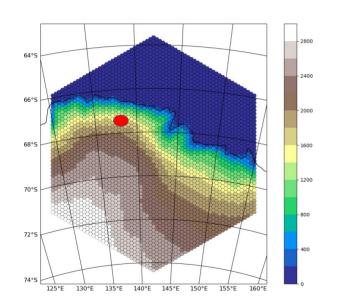


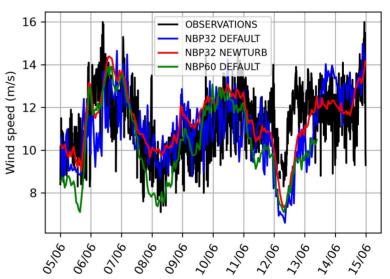
Conclusions:

- expérimentation (parmi d'autres !) d'un développement collectif de paramétrisation avec l'enseignement et le transfert de connaissance au centre
- nouvelle paramétrisation de diffusion turbulente TKE-l pour LMDZ, entièrement tunable et applicable à Mars
- -Malgré les efforts, 10 paramètres de tuning pour 1 param → œil avisé du physicien aidé de l'outil de tuning pour réduire la dimensionnalité lors d'un tuning full-physique

Perspectives

- Application dans des écoulements très cisaillés : vents catabatiques en Antarctique (thèse Valentin Wiener)





- travail sur la « martianisation » du code

Perspectives

Formulation « gravity-invariant » de la paramétrisation (géopotentiel comme coordonnée verticale)

Let's introduce the geopotential ϕ defined such that $d\phi = gdz$ as well as a 're-scaled' time τ defined by $d\tau = gdt$ The diffusion equation of a quantity c (Eq. 4) can be written in the form:

$$\frac{\partial c}{\partial \tau} = \frac{1}{\rho} \frac{\partial}{\partial \phi} \left(\rho K_c^{\phi} \frac{\partial c}{\partial \phi} \right) \tag{A1}$$

where $K_c^{\phi} = gK_c$. In such a framework, assuming down-gradient expression of turbulent fluxes and the same closures for the TKE dissipation and transport terms as in the main manuscript, the TKE evolution equation 16 reads:

$$\frac{\partial e}{\partial \tau} = K_m^{\phi} \left[(S^{\phi})^2 - Pr(Ri)(N^{\phi})^2 \right] + \frac{1}{\rho} \frac{\partial}{\partial \phi} (\rho c_e K_m^{\phi} \frac{\partial e}{\partial \phi}) - \frac{e^{3/2}}{c_e l^{\phi}}$$
(A2)

with
$$l^{\phi} = gl$$
, $(S^{\phi})^2 = (\partial_{\phi}u)^2 + (\partial_{\phi}v)^2$ and $(N^{\phi})^2 = \frac{1}{\theta_v} \frac{\partial \theta_v}{\partial \phi}$.

One can then express $K_m^{\phi} = l^{\phi}(\phi, e, Ri)S_m(Ri)\sqrt{e}$. Noting the gravity independent form of the gradient Richardson number $Ri = (N^{\phi})^2/(S^{\phi})^2$, the expressions for $S_m(Ri)$ and Pr(Ri) can be taken identically from Eq. 11 and 14 as they are gravity-independent.

