Aller au contenu. | Aller à la navigation

Outils personnels

Navigation
Vous êtes ici : Accueil / Communication / Bibliographie / Bibliographie LMDZ 2019

Bibliographie LMDZ 2019

Liste thématique des références concernant le développement de LMDZ


26 avril 2019

Références extérieures

[1]   Bram Van Leer. Towards the ultimate conservative difference scheme : IV. a new approach to numerical convection. J. Computational Phys., 23 :276–299, 1977.

[2]   T. Yamada. Simulations of nocturnal drainage flows by a q2l turbulence closure model. J. Atmos. Sci., 40 :91–106, 1983.

Configurations

[3]   H. Bellenger, E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard. ENSO representation in climate models : from CMIP3 to CMIP5. Climate Dynamics, 42 :1999–2018, Apr 2014.

[4]   P. Braconnot, F. Hourdin, S. Bony, J.-L. Dufresne, J.-Y. Grandpeix, and O. Marti. Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean-atmosphere model. Clim. Dyn., 29 :501–520, 2007.

[5]   R. Chadwick, G. M. Martin, D. Copsey, G. Bellon, M. Caian, F. Codron, C. Rio, and R. Roehrig. Examining the West African Monsoon circulation response to atmospheric heating in a GCM dynamical core. Journal of Advances in Modeling Earth Systems, 9(1) :149–167, March 2017.

[6]   J. L. Dufresne, M. A. Foujols, S. Denvil, A. Caubel, O. Marti, O. Aumont, Y. Balkanski, S. Bekki, H. Bellenger, R. Benshila, S. Bony, L. Bopp, P. Braconnot, P. Brockmann, P. Cadule, F. Cheruy, F. Codron, A. Cozic, D. Cugnet, N. de Noblet, J. P. Duvel, C. Ethé, L. Fairhead, T. Fichefet, S. Flavoni, P. Friedlingstein, J. Y. Grandpeix, L. Guez, E. Guilyardi, D. Hauglustaine, F. Hourdin, A. Idelkadi, J. Ghattas, S. Joussaume, M. Kageyama, G. Krinner, S. Labetoulle, A. Lahellec, M. P. Lefebvre, F. Lefevre, C. Levy, Z. X. Li, J. Lloyd, F. Lott, G. Madec, M. Mancip, M. Marchand, S. Masson, Y. Meurdesoif, J. Mignot, I. Musat, S. Parouty, J. Polcher, C. Rio, M. Schulz, D. Swingedouw, S. Szopa, C. Talandier, P. Terray, N. Viovy, and N. Vuichard. Climate change projections using the IPSL-CM5 Earth System Model : from CMIP3 to CMIP5. Climate Dynamics, 40 :2123–2165, May 2013.

[7]   Jean Philippe Duvel, Hugo Bellenger, Gilles Bellon, and Marine Remaud. An event-by-event assessment of tropical intraseasonal perturbations for general circulation models. Climate Dynamics, 40 :857–873, Feb 2013.

[8]   F. Hourdin, M.-A. Foujols, F. Codron, V. Guemas, J.-L. Dufresne, S. Bony, S. Denvil, L. Guez, F. Lott, J. Ghattas, P. Braconnot, O. Marti, Y. Meurdesoif, and L. Bopp. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim. Dyn., 40 :2167–2192, May 2013.

[9]   F. Hourdin, J.-Y. Grandpeix, C. Rio, S. Bony, A. Jam, F. Cheruy, N. Rochetin, L. Fairhead, A. Idelkadi, I. Musat, J.-L. Dufresne, A. Lahellec, M.-P. Lefebvre, and R. Roehrig. LMDZ5B : the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim. Dyn., 40 :2193–2222, May 2013.

[10]   F. Hourdin, I. Musat, S. Bony, P. Braconnot, F. Codron, J.-L. Dufresne, L. Fairhead, M.-A. Filiberti, P. Friedlingstein, J.-Y. Grandpeix, G. Krinner, P. Levan, Z.-X. Li, and F. Lott. The LMDZ4 general circulation model : climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics, 27 :787–813, 2006.

[11]   G. M. Martin, P. Peyrille, R. Roehrig, C. Rio, M. Caian, G. Bellon, F. Codron, J.-P. Lafore, D. E. Poan, and A. Idelkadi. Understanding the West African Monsoon from the analysis of diabatic heating distributions as simulated by climate models. Journal of Advances in Modeling Earth Systems, 9(1) :239–270, March 2017.

Schémas numériques / Advection / Dynamique

[12]   Sarvesh Dubey, Thomas Dubos, Hourdin Frédéric, and Harish Upadhyaya. On the inter-comparison of two tracer transport schemes on icosahedral grids. Applied Mathematical Modelling, 39 :4828–4847, 2015.

[13]   T. Dubos, S. Dubey, M. Tort, R. Mittal, Y. Meurdesoif, and F. Hourdin. DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility. Geosc. Model Dev., 8 :3131–3150, October 2015.

[14]   F. Hourdin and A. Armengaud. The use of finite-volume methods for atmospheric advection of trace species. part i : Test of various formulations in a general circulation model. Mon. Wea. Rev., 127 :822–837, 1999.

Couche limite de surface

[15]   S. Aït-Mesbah, J. L. Dufresne, F. Cheruy, and F. Hourdin. The role of thermal inertia in the representation of mean and diurnal range of surface temperature in semiarid and arid regions. GRL, 42 :7572–7580, sep 2015.

[16]   A. Berg, K. Findell, B. Lintner, A. Giannini, S.I. Seneviratne, B. van den Hurk, R. Lorenz, A. Pitman, S. Hagemann, A. Meier, F. Cheruy, A. Ducharne, S. Malyshev, and P. C. D. Milly. Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nature Climate Change, 6 :869–874, 2016.

[17]   A. Campoy, A. Ducharne, F. Cheruy, F. Hourdin, J. Polcher, and J. C. Dupont. Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. Journal of Geophysical Research : Atmospheres, 118(19) :10,725–10,739, 2013.

[18]   F. Cheruy, A. Campoy, J.-C. Dupont, A. Ducharne, F. Hourdin, M. Haeffelin, M. Chiriaco, and A. Idelkadi. Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim. Dyn., 40 :2251–2269, May 2013.

[19]   F. Cheruy, J. L. Dufresne, S. Ait Mesbah, J. Y. Grandpeix, and F. Wang. Role of soil thermal inertia in surface temperature and soil moisture-temperature feedback. Journal of Advances in Modeling Earth Systems, 9(8) :2906–2919, 2017.

[20]   Gerhard Krinner. Impact of lakes and wetlands on boreal climate. Journal of Geophysical Research (Atmospheres), 108 :4520, Aug 2003.

[21]   Gerhard Krinner, Olivier Boucher, and Yves Balkanski. Ice-free glacial northern Asia due to dust deposition on snow. Climate Dynamics, 27 :613–625, Nov 2006.

[22]   Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nand er Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu. ESM-SnowMIP : assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 11 :5027–5049, Dec 2018.

[23]   R. Lorenz, D. Argueso, M. G. Donat, A. J. Pitman, B. Hurk, A. Berg, D. M. Lawrence, F. Cheruy, A. Ducharne, S. Hagemann, A. Meier, P. C. D. Milly, and S. I. Seneviratne. Influence of land ? ? ?atmosphere feedbacks on temperature and precipitation extremes in the glace ? ? ?cmip5 ensemble. Journal of Geophysical Research : Atmospheres, 121(2) :607–623, 2016.

[24]   H.-Y. Ma, S. A. Klein, S. Xie, C. Zhang, S. Tang, Q. Tang, C. J. Morcrette, K. Van Weverberg, J. Petch, M. Ahlgrimm, L. K. Berg, F. Cheruy, J. Cole, R. Forbes, W. I. Gustafson, M. Huang, Y. Liu, W. Merryfield, Y. Qian, R. Roehrig, and Y.-C. Wang. Causes : On the role of surface energy budget errors to the warm surface air temperature error over the central u.s. Journal of Geophysical Research : Atmospheres, pages n/a–n/a, 2018. 2017JD027194.

[25]   M. Ménégoz, G. Krinner, Y. Balkanski, O. Boucher, A. Cozic, S. Lim, P. Ginot, P. Laj, H. Gallée, P. Wagnon, A. Marinoni, and H. W. Jacobi. Snow cover sensitivity to black carbon deposition in the Himalayas : from atmospheric and ice core measurements to regional climate simulations. Atmospheric Chemistry & Physics, 14 :4237–4249, Apr 2014.

[26]   C. J. Morcrette, K. Van Weverberg, H.-Y. Ma, M. Ahlgrimm, E. Bazile, L. K. Berg, A. Cheng, F. Cheruy, J. Cole, R. Forbes, W. I. Gustafson Jr, M. Huang, W.-S. Lee, Y. Liu, L. Mellul, W. Merryfield, Y. Qian, R. Roehrig, Y.-C. Wang, S. Xie, K.-M. Xu, C. Zhang, S. Klein, and J. Petch. Introduction to causes : Description of weather and climate models and their near-surface temperature errors in 5-day hindcasts near the southern great plains. Journal of Geophysical Research : Atmospheres, 2018. 2017JD027199.

[27]   H. J. Punge, H. Gallée, M. Kageyama, and G. Krinner. Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM. Climate of the Past, 8 :1801–1819, Nov 2012.

[28]   S.I Seneviratne and 18 co authors. Impact of soil-moisture climate feedbacks on cmip5 projections : First results from the glace-cmip5 experiment. Geophys. Res. Lett., 40 :5212 5217, 2013.

[29]   B. van den Hurk, H. Kim, G. Krinner, S. I. Seneviratne, C. Derksen, T. Oki, H. Douville, J. Colin, A. Ducharne, F. Cheruy, N. Viovy, M. J. Puma, Y. Wada, W. Li, B. Jia, A. Alessandri, D. M. Lawrence, G. P. Weedon, R. Ellis, S. Hagemann, J. Mao, M. G. Flanner, M. Zampieri, S. Materia, R. M. Law, and J. Sheffield. Ls3mip (v1.0) contribution to cmip6 : the land surface, snow and soil moisture model intercomparison project – aims, setup and expected outcome. Geoscientific Model Development, 9(8) :2809–2832, 2016.

[30]   K. Van Weverberg, C. J. Morcrette, J. Petch, S. A. Klein, H.-Y. Ma, C. Zhang, S. Xie, Q. Tang, W. I. Gustafson Jr, Y. Qian, L. K. Berg, Y. Liu, M. Huang, M. Ahlgrimm, R. Forbes, E. Bazile, R. Roehrig, J. Cole, W. Merryfield, W.-S. Lee, F. Cheruy, L. Mellul, Y.-C. Wang, K. Johnson, and M. M. Thieman. Causes : Attribution of surface radiation biases in nwp and climate models near the u.s. southern great plains. Journal of Geophysical Research : Atmospheres, pages n/a–n/a, 2018. 2017JD027188.

[31]   E. Vignon, F. Hourdin, C. Genthon, H. Gallée, E. Bazile, M.-P. Lefebvre, J.-B. Madeleine, and B. J. H. Van de Wiel. Antarctic boundary layer parametrization in a general circulation model : 1-D simulations facing summer observations at Dome C. J. Geophys. Res., 122 :6818–6843, July 2017.

[32]   E. Vignon, F. Hourdin, C. Genthon, B. J. H. Van de Wiel, H. Gallée, J.-B. Madeleine, and J. Beaumet. Modeling the Dynamics of the Atmospheric Boundary Layer Over the Antarctic Plateau With a General Circulation Model. J. of Adv. in Modeling Earth Systems, 10 :98–125, January 2018.

[33]   M. M. Vogel, R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B. J. J. M. Hurk, and S. I. Seneviratne. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3) :1511–1519, 2017.

[34]   F. Wang, F. Cheruy, and J.-L. Dufresne. The improvement of soil thermodynamics and its effects on land surface meteorology in the ipsl climate model. Geoscientific Model Development, 9(1) :363–381, 2016.

[35]   Fuxing Wang, Agnès Ducharne, Frédérique Cheruy, Min-Hui Lo, and Jean-Yves Grandpeix. Impact of a shallow groundwater table on the global water cycle in the ipsl land–atmosphere coupled model. Climate Dynamics, Jul 2017.

Modèle du thermique

[36]   F. Hourdin, F. Couvreux, and L. Menut. Parameterisation of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci., 59 :1105–1123, 2002.

[37]   C. Rio and F. Hourdin. A thermal plume model for the convective boundary layer : Representation of cumulus clouds. J. Atmos. Sci., 65 :407–425, 2008.

[38]   C. Rio, F. Hourdin, F. Couvreux, and A. Jam. Resolved Versus Parametrized Boundary-Layer Plumes. Part II : Continuous Formulations of Mixing Rates for Mass-Flux Schemes. Boundary-layer Meteorol., 135 :469–483, June 2010.

Schéma statistique de nuages

[39]   S. Bony and K. A. Emanuel. A parameterization of the cloudiness associated with cumulus convection ; evaluation using TOGA COARE data. J. Atmos. Sci., 58 :3158–3183, 2001.

[40]   A. Jam, F. Hourdin, C. Rio, and F. Couvreux. Resolved Versus Parametrized Boundary-Layer Plumes. Part III : Derivation of a Statistical Scheme for Cumulus Clouds. Boundary-layer Meteorol., 147 :421–441, June 2013.

[41]   J. Jouhaud, J.-L. Dufresne, J.-B. Madeleine, F. Hourdin, F. Couvreux, N. Villefranque, and A. Jam. Accounting for vertical subgrid-scale heterogeneity in low-level cloud fraction parameterizations. J. of Adv. in Modeling Earth Systems, 10(11) :2686–2705, 2018.

Convection profonde et poches

[42]   J.-Y. Grandpeix and J.-P. Lafore. A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part I : The Models. Journal of Atmospheric Sciences, 67 :881–897, April 2010.

[43]   J.-Y. Grandpeix, J.-P. Lafore, and F. Cheruy. A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part II : 1D Simulations. Journal of Atmospheric Sciences, 67 :898–922, April 2010.

[44]   C. Rio, J.-Y. Grandpeix, F. Hourdin, F. Guichard, F. Couvreux, J.-P. Lafore, A. Fridlind, A. Mrowiec, R. Roehrig, N. Rochetin, M.-P. Lefebvre, and A. Idelkadi. Control of deep convection by sub-cloud lifting processes : the ALP closure in the LMDZ5B general circulation model. Clim. Dyn., 40 :2271–2292, May 2013.

[45]   Nicolas Rochetin, Fleur Couvreux, Jean-Yves Grandpeix, and Catherine Rio. Deep Convection Triggering by Boundary Layer Thermals. Part I : LES Analysis and Stochastic Triggering Formulation. J. Atmos. Sci., 71 :496–514, February 2014.

[46]   Nicolas Rochetin, Jean-Yves Grandpeix, Catherine Rio, and Fleur Couvreux. Deep Convection Triggering by Boundary Layer Thermals. Part II : Stochastic Triggering Parameterization for the LMDZ GCM. J. Atmos. Sci., 71 :515–538, February 2014.

Ondes de gravité / Relief sous-maille

[47]   A. de la Cámara and F. Lott. A stochastic parameterization of the gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42 :2071–2078, 2015.

[48]   A. de la Cámara, F. Lott, and M. Abalos. Climatology of the middle atmosphere in lmdz : Impact of source-related parameterizations of gravity wave drag. J. of Adv. in Modeling Earth Systems, 8(4) :1507–1525, 2016.

[49]   C. O. Hines. Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2 : Broad and quasi monochromatic spectra, and implementation. J. of Atmosph. and Solar-Terrestrial Phys., 59(4) :387–400, 1997.

[50]   F. Lott, L. Fairhead, F. Hourdin, and P. Levan. The stratospheric version of lmdz : Dynamical climatologies, arctic oscillation, and impact on the surface climate. Clim. Dyn., 25 :851–868, 2005.

[51]   F. Lott and L. Guez. A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res., 118 :8897–8909, 2013.

Méthodologies

[52]   Ara Arakelian and Francis Codron. Southern Hemisphere Jet Variability in the IPSL GCM at Varying Resolutions. Journal of the Atmospheric Sciences, 69(12) :3788–3799, December 2012.

[53]   Julien Cattiaux, Benjamin Quesada, Ara Arak ? ? ? ?lian, Francis Codron, Robert Vautard, and Pascal Yiou. North-Atlantic dynamics and European temperature extremes in the IPSL model : sensitivity to atmospheric resolution. Climate Dynamics, 40(9-10) :2293–2310, May 2013.

[54]   B. Charnay, F. Forget, R. Wordsworth, J. Leconte, E. Millour, F. Codron, and A. Spiga. Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. Journal of Geophysical Research : Atmospheres, 118(18) :10,414–10,431, 2013.

[55]   Francis Codron. Ekman heat transport for slab oceans. Climate Dynamics, 38(1-2) :379–389, 2012.

[56]   O. Coindreau, F. Hourdin, M. Haeffelin, A. Mathieu, and C. Rio. Assessment of Physical Parameterizations Using a Global Climate Model with Stretchable Grid and Nudging. Monthly Weather Review, 135 :1474–1489, 2007.

[57]   F. B. Diallo, F. Hourdin, C. Rio, A.-K. Traore, L. Mellul, F. Guichard, and L. Kergoat. The surface energy budget computed at the grid-scale of a climate model challenged by station data in west africa. J. of Adv. in Modeling Earth Systems, 9(7) :2710–2738, 2017.

[58]   Robert A Eagle, Camille Risi, Jonathan L Mitchell, John M Eiler, Ulrike Seibt, J David Neelin, Gaojun Li, and Aradhna K Tripati. High regional climate sensitivity over continental china constrained by glacial-recent changes in temperature and the hydrological cycle. Proceedings of the National Academy of Sciences, 110(22) :8813–8818, 2013.

[59]   I. Gomez-Leal, F. Codron, and F. Selsis. Thermal light curves of Earth-like planets : 1. Varying surface and rotation on planets in a terrestrial orbit. Icarus, 269 :98–110, May 2016.

[60]   Virginie Guemas and Francis Codron. Differing Impacts of Resolution Changes in Latitude and Longitude on the Midlatitudes in the LMDZ Atmospheric GCM. Journal of Climate, 24(22) :5831–5849, November 2011.

[61]   F. Hourdin and J.-P. Issartel. Sub-surface nuclear tests monitoring through the CTBT Xenon Network. Geophys. Res. Lett., 27 :2245–2248, 2000.

[62]   Gerhard Krinner, Julien Beaumet, Vincent Favier, Michel Déqué, and Claire Brutel-Vuilmet. Empirical Run-Time Bias Correction for Antarctic Regional Climate Projections With a Stretched-Grid AGCM. Journal of Advances in Modeling Earth Systems, 11 :64–82, Jan 2019.

[63]   Gerhard Krinner, Chloé Largeron, Martin Ménégoz, Cécile Agosta, and Claire Brutel-Vuilmet. Oceanic Forcing of Antarctic Climate Change : A Study Using a Stretched-Grid Atmospheric General Circulation Model. Journal of Climate, 27 :5786–5800, Aug 2014.

[64]   Nicolas Rochetin, Benjamin R. Lintner, Kirsten L. Findell, Adam H. Sobel, and Pierre Gentine. Radiative-Convective Equilibrium over a Land Surface. Journal of Climate, 27(23) :8611–8629, Dec 2014.

Transport aérosols

[65]   F. Hourdin, M. Gueye, B. Diallo, J.-L. Dufresne, J. Escribano, L. Menut, B. Marticoréna, G. Siour, and F. Guichard. Parameterization of convective transport in the boundary layer and its impact on the representation of the diurnal cycle of wind and dust emissions. Atmosph. Chemist. and Physics, 15 :6775–6788, June 2015.

[66]   H. Senghor, É. Machu, F. Hourdin, and A. Thierno Gaye. Seasonal cycle of desert aerosols in western Africa : analysis of the coastal transition with passive and active sensors. Atmosph. Chemist. and Physics, 17 :8395–8410, July 2017.

Isotopes

[67]   Svetlana Botsyun, Pierre Sepulchre, Yannick Donnadieu, Camille Risi, Alexis Licht, and Jeremy K Caves Rugenstein. Revised paleoaltimetry data show low tibetan plateau elevation during the eocene. Science, 363(6430) :eaaq1436, 2019.

[68]   Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu. Impacts of tibetan plateau uplift on atmospheric dynamics and associated precipitation δ 18 o. Climate of the Past, 12(6) :1401–1420, 2016.

[69]   A Cauquoin, P Jean-Baptiste, C Risi, É Fourré, B Stenni, and A Landais. The global distribution of natural tritium in precipitation simulated with an atmospheric general circulation model and comparison with observations. Earth and Planetary Science Letters, 427 :160–170, 2015.

[70]   Alexandre Cauquoin, Philippe Jean-Baptiste, Camille Risi, Élise Fourré, and Amaelle Landais. Modeling the global bomb tritium transient signal with the agcm lmdz-iso : A method to evaluate aspects of the hydrological cycle. Journal of Geophysical Research : Atmospheres, 121(21) :12–612, 2016.

[71]   C Risi, A Landais, R Winkler, and Françoise Vimeux. Can we determine what controls the spatio-temporal distribution of d-excess and 17 o-excess in precipitation using the lmdz general circulation model ? Climate of the Past, 9(5) :2173–2193, 2013.

[72]   Camille Risi, Sandrine Bony, Françoise Vimeux, Christian Frankenberg, David Noone, and John Worden. Understanding the sahelian water budget through the isotopic composition of water vapor and precipitation. Journal of Geophysical Research : Atmospheres, 115(D24), 2010.

[73]   Camille Risi, Sandrine Bony, Françoise Vimeux, and Jean Jouzel. Water-stable isotopes in the lmdz4 general circulation model : Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. Journal of Geophysical Research : Atmospheres, 115(D12), 2010.

[74]   Camille Risi, David Noone, John Worden, Christian Frankenberg, Gabriele Stiller, Michael Kiefer, Bernd Funke, Kaley Walker, Peter Bernath, Matthias Schneider, et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues : 1. comparison between models and observations. Journal of Geophysical Research : Atmospheres, 117(D5), 2012.

Analyse climatique

[75]   Hugo Bellenger, Jean-Philippe Duvel, Matthieu Lengaigne, and Phu Levan. Impact of organized intraseasonal convective perturbations on the tropical circulation. Geophysical Research Letters, 36 :L16703, Aug 2009.

[76]   Guillaume Gastineau, Fabio D’Andrea, and Claude Frankignoul. Atmospheric response to the north atlantic ocean variability on seasonal to decadal time scales. Climate dynamics, 40(9-10) :2311–2330, 2013.

[77]   Guillaume Gastineau, Blandine L’hévéder, Francis Codron, and Claude Frankignoul. Mechanisms determining the winter atmospheric response to the atlantic overturning circulation. Journal of Climate, 29(10) :3767–3785, 2016.

[78]   Gerhard Krinner, Christophe Genthon, Zhao-Xin Li, and Phu Le van. Studies of the Antarctic climate with a stretched-grid general circulation model. Journal of Geophysical Research, 102 :13,731–13,745, Jun 1997.

[79]   Blandine L’hévéder, Francis Codron, and Michael Ghil. Impact of anomalous northward oceanic heat transport on global climate in a slab ocean setting. Journal of Climate, 28(7) :2650–2664, 2015.

[80]   M. Ménégoz, G. Krinner, Y. Balkanski, A. Cozic, O. Boucher, and P. Ciais. Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century. The Cryosphere, 7 :537–554, Mar 2013.

Transport inverse

[81]   F. Chevallier, M. Fisher, P. Peylin, S. Serrar, P. Bousquet, F. M. BréOn, A. ChéDin, and P. Ciais. Inferring CO2 sources and sinks from satellite observations : Method and application to TOVS data. Journal of Geophysical Research (Atmospheres), 110(D24) :D24309, Dec 2005.

[82]   N. Huneeus, F. Chevallier, and O. Boucher. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model. Atmospheric Chemistry & Physics, 12(10) :4585–4606, May 2012.

[83]   I. Pison, P. Bousquet, F. Chevallier, S. Szopa, and D. Hauglustaine. Multi-species inversion of CH4, CO and H2 emissions from surface measurements. Atmospheric Chemistry & Physics, 9(14) :5281–5297, Jul 2009.

[84]    Bo Zheng, Frederic Chevallier, Philippe Ciais, Yi Yin, Merritt N. Deeter, Helen M. Worden, Yilong Wang, Qiang Zhang, and Kebin He. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environmental Research Letters, 13(4) :044007, Apr 2018.

[85]   Bo Zheng, Frederic Chevallier, Philippe Ciais, Yi Yin, and Yilong Wang. On the Role of the Flaming to Smoldering Transition in the Seasonal Cycle of African Fire Emissions. Geophysical Research Letters, 45(21) :11,998–12,007, Nov 2018.

Ajouter un commentaire

Vous pouvez ajouter un commentaire en complétant le formulaire ci-dessous. Le format doit être plain text. Les commentaires sont modérés.

Enter the word