3. Model Setup and Initialisation

3.1 Domain Parameters and Boundary Conditions

For the **3d models** we give the following grid and boundary specifications:

Domain Size:

Domain Width: 6400 m
Domain Length: 6400 m
Domain Height: 3000 m

■ No. of Grid Points:

x grid points: 64y grid points: 64z grid points: 75

■ Implying a Resolution:

dx = 100 mdy = 100 m

dz = 40 m

- Boundary conditions:
 - Lateral: Periodic
 - Top: In order to minimize spurious reflection of upward propagating gravity waves, you may want to use a sponge layer for damping perturbations. The sponge layer should not start any lower than 200 m above the mean inversion height.
 - Bottom: Prescribed Fluxes. See section 3.3 for more details.

For the **2d models** the same boundary specifications apply. Use for the grid specifications:

■ Domain Size:

Domain Width: 409600 mDomain Height: 3000 m

■ No. of Grid Points:

- x grid points: 64*64 = 4096
- z grid points: 75
- Implying a Resolution:
 - dx = 100 m
 - dz = 40 m

For the **1d models** the only relevant specification is the vertical resolution. We prescribe the same vertical resolution dz=40m as used for the 2d/3d-models in order to keep resolution effects out of the intercomparison as much as possible.

REMARK: It appears that some 1d-models have difficulties with the (high) 40m resolution because of "hard-coded" resolution dependancies. Therefore, *only* those 1d-modellers who really have insurmountable problems with the 40m resolution can use a more coarse resolution. In that case we request to use the ECMWF-standard resolution. In the Appendix one can find the level heights and the corresponding initial fields and forcings for this more coarse resolution.

3.2 Wind and Thermodynamic Profiles

Based on the observed profiles the following initial setup for the horizontal wind components (u,v), liquid potential temperature (theta_l) and the specific total water content (q_t) is proposed. Other profiles such as pressure, absolute temperature, etc, can be deduced assuming hydrostatic equilibrium. Initially, it can be assumed that there is zero liquid water $(q_t = 0.0)$, so that:

theta = theta_l
$$q_v = q_t$$

(Tables with the profiles for the prescribed vertical 40m resolution can be found in the Appendix)

v [m/s]

z > 0

0.0

q t [g/kg]

0 < z < 520 17.0 + (16.3 - 17.0)/(520) * z 520 < z < 1480 16.3 + (10.7 - 16.3)/(1480 - 520) * (z - 520) 1480 < z < 2000 10.7 + (4.2 - 10.7) /(2000 - 1480) * (z - 1480) z > 2000 4.2 - 1.2E-3*(z - 2000)

theta l[K]

0 < z < 520 298.7

520 < z < 1480 298.7 + (302.4 - 298.7)/(1480 - 520) * (z - 520)

1480< z < 2000 302.4 + (308.2 - 302.4)/(2000 - 1480) * (z - 1480)

(p) = d() | z > 2000 | 308.2 + 3.65E-3 * (z - 2000) | G() = 100 | E()

3.3 Surface Conditions

The sensible and latent heat fluxes are prescribed for the 1d, 2d and 3d models as:

The momentum fluxes are prescribed by

$$uw = -u(u*^2) / (u^2+v^2)^(1/2)$$
 $vw = -v(u*^2) / (u^2+v^2)^(1/2)$

where $u^* = 0.28$ m/s and the velocities (u and v) are the values at the lowest grid point level in the model. This way, only the total momentum flux is fixed to u^*^2 .

REMARK: It appears that for some 1d-models it is not trivial to prescribe surface fluxes because of the use of implicit schemes. If

this gives serious problems one can use an interactive surface layer scheme, *provided* that the fluxes remain within 10% of the prescribed surface fluxes!

Additional surface characteristics:

```
surface pressure: ps = 1015 mb sea sea surface potential temperature: ths = 299.1 K implying a sea surface temperature: ts = 300.375 K sea surface specific humidity: qvs = 22.45 g/kg
```

3.4 Large Scale Forcing and Radiation

For all 3d, 2d and 1d models the large scale advection, subsidence and radiation are prescribed according to:

Large Scale Subsidence w [m/s]

Apply the subsidence on the prognostic fields q_t, theta_l, u and v.

```
0 < z < 1500 - (0.0065/1500) * z

1500 < z < 2100 - 0.0065 + 0.0065/(2100 - 1500) * (z - 1500)

z > 2100 0.0
```

Radiative Cooling, dtheta/dt (K/sec)

```
0 < z < 1500 -2.315 * 10^-5

1500 < z < 2500 -2.315 * 10^-5 + 2.315 * 10^-5 /(2500 - 1500) * (z - 1500)

z > 2500 0.0
```

Remark: It appears that it is important for some 1d-models that above the inversion the heating due to subsidence is exactly compensated by radiative cooling (due to the relative long time-integration of 36 hours). We therefore prescribe that above the inversion, i.e. for z>2000 the prescribed radiative cooling is simply choosen to be minus the heating due to subsidential heating. In formula:

(d theta 1/dt) rad = w subs (d theta 1/dz)

For the 3d/2d-runs where the simulation time is much shorter this

modification can be ignored.

Large Scale Horizontal Advection

The only significant diagnosed large scale advection term is a low level drying of about 1 g/kg day^-1 (Holland and Rasmusson 1973). We therefore prescribe a moisture tendency dq_t/dt in the subcloud layer due to horizontal advection of:

All other large scale advection terms should be put to zero.

3.5 The Geostrophic Wind

The zonal u-component of the geostrophic is decreasing with 1.8 * 10^-3 s^-1 corresponding with the observed wind above the mixed layer. The geostrophic v-component is assumed to be zero.

$$z > 0$$
: $u_g = -10 + 1.8 * 10^{-3} * z$ [m/s]
 $z > 0$: $v_g = 0.0$ [m/s]

3.6 Initial pertubations

The 3d and 2d models are initialised with random fluctutions of theta 1 and q t at the lowest 40 levels given by:

Initial subgrid profile of subgrid TKE:

TKE
$$\theta < z < 3000$$
 : $1 - z/3000 \text{ m}^2/\text{s}^2$

3.7 Other Parameters and Remarks

Latitude:	15	Degr. implying a
Coriolis parameter:	0.376 * 10^-4	s^-1
c_p	1005.	J kg^-1 K^-1
g	9.81	m s^-2
Rd	287.	J kg^-1 K^-1
L	2.5 * 10^6	J kg^-1
surface pressure	1015	mb

The microphysics parameterizations in the 2d and 3d modelss should be switched off.

Back to the Home Page